Rebuttal to: Experimental study of the stability of metals associated with iron oxyhydroxides precipitated in acid mine drainage, by S. Rose and A. M. Ghazi

2000 ◽  
Vol 39 (7) ◽  
pp. 823-824
Author(s):  
B. Dold
RSC Advances ◽  
2019 ◽  
Vol 9 (33) ◽  
pp. 19016-19030 ◽  
Author(s):  
Yan-Rong Dong ◽  
Jun-Zhen Di ◽  
Ming-Xin Wang ◽  
Ya-Dong Ren

A cost-effective system for acid mine drainage removal was developed with the key role of alkaline H2O2 modified corncob and sulfate reducing bacteria.


2020 ◽  
Vol 157 ◽  
pp. 106560
Author(s):  
Youzheng Chai ◽  
Pufeng Qin ◽  
Jiachao Zhang ◽  
Zhibin Wu ◽  
Tianyou Li ◽  
...  

2020 ◽  
Vol 399 ◽  
pp. 122844 ◽  
Author(s):  
Carlito Baltazar Tabelin ◽  
Ryan D. Corpuz ◽  
Toshifumi Igarashi ◽  
Mylah Villacorte-Tabelin ◽  
Richard Diaz Alorro ◽  
...  

2012 ◽  
Vol 46 (15) ◽  
pp. 8140-8147 ◽  
Author(s):  
Mengqiang Zhu ◽  
Benjamin Legg ◽  
Hengzhong Zhang ◽  
Benjamin Gilbert ◽  
Yang Ren ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 860
Author(s):  
Eduardo Leiva ◽  
María Cayazzo ◽  
Luis Dávila ◽  
Mario Torres ◽  
Christian Ledezma

Surface paste tailings’ disposal has emerged recently as an optimal and efficient method to favor tailings’ self-containment after being deposited into dams. This disposal method can improve the reuse of water and reduce the generation of acid mine drainage (AMD) and the release of leachates (e.g., acid and heavy metals). However, the implications of chemical factors or mixed-water chemistry in the stability of paste tailings over time are not clear. In this work, we evaluated the release of sulfate from tailing samples and the role of sulfate as a critical factor in the tailings’ strength, consistency, and stability. Our results showed that the release of acid runoff with high sulfate load from the tailings is negligible. Leaching tests were performed for 180 days and did not show a significant release of sulfate, heavy metals, or acid waters. However, the presence of sulfate salts derived from the binders used in the pretreatment of the paste tailings shows an impact on the tailings’ consistency. Undrained triaxial monotonic compression tests revealed low effective cohesion forces in the tailings samples. In addition, it was observed that, in tailings slurries prepared with varying concentrations of sulfate (0, 500, and 1000 mg/L), the slump test value dropped Δ−55% when the sulfate concentration increased from 0 to 1000 mg/L. These results support the idea that the presence of sulfate within the tailings could be relevant for the paste consistency after storage. This knowledge will contribute to a better understanding of the critical chemical factors that affect the stability of paste tailings over time.


Sign in / Sign up

Export Citation Format

Share Document