IDH-wildtype glioblastomas and grade III/IV IDH-mutant gliomas show elevated tracer uptake in fibroblast activation protein–specific PET/CT

2019 ◽  
Vol 46 (12) ◽  
pp. 2569-2580 ◽  
Author(s):  
Manuel Röhrich ◽  
Anastasia Loktev ◽  
Annika K. Wefers ◽  
Annette Altmann ◽  
Daniel Paech ◽  
...  
2021 ◽  
Author(s):  
Shuailiang Wang ◽  
Xin Zhou ◽  
Xiaoxia Xu ◽  
Jin Ding ◽  
Song Liu ◽  
...  

Abstract PurposeIn this study, a novel Al18F-NOTA-FAPI probe was developed for fibroblast activation protein (FAP) targeted tumour imaging, which was available to achieve curie level radioactivity by automatic synthesizer. The tumour detection efficacy of Al18F-NOTA-FAPI was further validated both in preclinical and clinical translational studies. MethodsThe radiolabeling procedure of Al18F-NOTA-FAPI was optimized. Cell uptake and competitive binding assay were completed with U87MG and A549 cell lines, to evaluate the affinity and specificity of Al18F-NOTA-FAPI probe. The biodistribution, pharmacokinetics, radiation dosimetry and tumour imaging efficacy of Al18F-NOTA-FAPI probe were researched with healthy Kunming (KM) and/or U87MG model mice. After the approval of ethical committee, Al18F-NOTA-FAPI probe was translated into clinical for the PET/CT imaging of first 10 cancer patients. ResultsThe radiolabeling yield of Al18F-NOTA-FAPI was 33.8 ± 3.2% through manually operation (n = 10), with the radiochemical purity over than 99% and the specific activity of 9.3-55.5 MBq/nmol. Whole body effective dose of Al18F-NOTA-FAPI was estimated to be 1.24E-02 mSv/MBq, lower than several other FAPI probes ( 68Ga-FAPI-04, 68Ga-FAPI-46 and 68Ga-FAPI-74). In U87MG tumour bearing mice, Al18F-NOTA-FAPI showed good tumor detection efficacy from the results of micro PET/CT imaging and biodistribution studies. In organ biodistribution study of human patients, Al18F-NOTA-FAPI showed lower SUVmean than 2-[18F]FDG in most organs, especially in liver (1.1 ± 0.2 vs. 2.0 ± 0.9), brain (0.1 ± 0.0 vs. 5.9 ± 1.3), and bone marrow (0.9 ± 0.1 vs. 1.7 ± 0.4). Meanwhile, Al18F-NOTA-FAPI do not show extensive bone uptakes, and was able to find out more tumour lesions than 2-[18F]FDG in the PET/CT imaging of several patients. ConclusionAl18F-NOTA-FAPI probe was successfully fabricated and applied in fibroblast activation protein targeted tumour PET/CT imaging, which showed excellent imaging quality and tumour detection efficacy in U87MG tumour bearing mice as well as in human cancer patients.


Author(s):  
Claudia Kesch ◽  
Leubet Yirga ◽  
Katharina Dendl ◽  
Analena Handke ◽  
Christopher Darr ◽  
...  

Abstract Purpose To evaluate fibroblast-activation-protein (FAP) expression in different clinical stages of prostate cancer (PC) with regards to utility of [68 Ga]Ga-FAPI-04 PET/CT imaging in patients with castration-resistant PC (CRPC). Methods Tissue microarrays (TMAs) were constructed from prostatic tissue from 94 patients at different stages of PC (primary PC, patients undergoing neoadjuvant androgen deprivation therapy, CRPC, and neuroendocrine PC (NEPC)) and were stained with anti-FAP monoclonal antibody. A positive pixel count algorithm (H-Index) was used to compare FAP expression between the groups. Additionally, three men with advanced CRPC or NEPC underwent [68 Ga]Ga-FAPI-04 PET/CT, and PET positivity was analyzed. Results The mean H-index for benign tissue, primary PC, neoadjuvant androgen deprivation therapy before radical prostatectomy, CRPC, and NEPC was 0.018, 0.031, 0.042, 0.076, and 0.051, respectively, indicating a significant rise in FAP expression with advancement of disease. Corroborating these findings [68 Ga]Ga-FAPI-04 PET/CT was highly positive in men with advanced CRPC. Conclusion Increased FAP tissue expression supports the use of FAP inhibitor (FAPI)-molecular theranostics in CRPC.


2022 ◽  
Vol 11 ◽  
Author(s):  
Tianshuo Yang ◽  
Long Ma ◽  
Haodong Hou ◽  
Feng Gao ◽  
Weijing Tao

Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (18F-FDG) is currently a standard imaging examination used in clinical practice, and plays an essential role in preoperative systemic evaluation and tumor staging in patients with tumors. However, 18F-FDG PET/CT has certain limitations in imaging of some tumors, like gastric mucus adenocarcinoma, highly differentiated hepatocellular carcinoma, renal cell carcinoma, and peritoneal metastasis. Therefore, to search for new tumor diagnosis methods has always been an important topic in radiographic imaging research. Fibroblast activation protein (FAP) is highly expressed in many epithelial carcinomas, and various isotope-labelled fibroblast activation protein inhibitors (FAPI) show lower uptake in the brain and abdominal tissues than in tumor, thus achieving high image contrast and good tumor delineation. In addition to primary tumors, FAPI PET/CT is better than FDG PET/CT for detecting lymph nodes and metastases. Additionally, the highly selective tumor uptake of FAPI may open up new application areas for the non-invasive characterization, staging of tumors, as well as monitoring tumor treatment efficacy. This review focuses on the recent research progress of FAPI PET/CT in the application to abdominal and pelvic tumors, with the aim of providing new insights for diagnostic strategies for tumor patients, especially those with metastases.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Punit Sharma ◽  
Shashank Shekhar Singh ◽  
Shankaramurthy Gayana

Sign in / Sign up

Export Citation Format

Share Document