scholarly journals Cortical abnormalities of synaptic vesicle protein 2A in focal cortical dysplasia type II identified in vivo with 18F-SynVesT-1 positron emission tomography imaging

Author(s):  
Yongxiang Tang ◽  
Jie Yu ◽  
Ming Zhou ◽  
Jian Li ◽  
Tingting Long ◽  
...  

Abstract   Purpose The loss of synaptic vesicle glycoprotein 2A (SV2A) is well established as the major correlate of epileptogenesis in focal cortical dysplasia type II (FCD II), but this has not been directly tested in vivo. In this positron emission tomography (PET) study with the new tracer 18F-SynVesT-1, we evaluated SV2A abnormalities in patients with FCD II and compared the pattern to 18F-fluorodeoxyglucose (18F-FDG). Methods Sixteen patients with proven FCD II and 16 healthy controls were recruited. All FCD II patients underwent magnetic resonance imaging (MRI) and static PET imaging with both 18F-SynVesT-1 and 18F-FDG, while the controls underwent MRI and PET with only 18F-SynVesT-1. Visual assessment of PET images was undertaken. The standardized uptake values (SUVs) of 18F-SynVesT-1 were computed for regions of interest (ROIs), along with SUV ratio (SUVr) between ROI and centrum semiovale (white matter). Asymmetry indices (AIs) were analyzed between the lesion and the contralateral hemisphere for intersubject comparisons. Results Lesions in the brains of FCD II patients had significantly reduced 18F-SynVesT-1 uptake compared with contralateral regions, and brains of the controls. 18F-SynVesT-1 PET indicated low lesion uptake in 14 patients (87.5%), corresponding to hypometabolism detected by 18F-FDG PET, with higher accuracy for lesion localization than MRI (43.8%) (P < 0.05). AI analyses demonstrated that in the lesions, SUVr for each of the radiotracers were not significantly different (P > 0.05), and 18F-SynVesT-1 SUVr correlated with that of 18F-FDG across subjects (R2 = 0.41, P = 0.008). Subsequent visual ratings indicated that 18F-SynVesT-1 uptake had a more restricted pattern of reduction than 18F-FDG uptake in FCD II lesions (P < 0.05). Conclusion SV2A PET with 18F-SynVesT-1 shows a higher accuracy for the localization of FCD II lesions than MRI and a more restricted pattern of abnormality than 18F-FDG PET.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5542-5542
Author(s):  
Nicola Giuliani ◽  
Silvia Valtorta ◽  
Martina Chiu ◽  
Denise Toscani ◽  
Andrea Sartori ◽  
...  

High glycolitic activity of multiple myeloma (MM) cells is the rationale for the use of Positron Emission Tomography (PET) with 18F-fluorodeoxyglucose ([18F]FDG) to detect both medullary and extramedullary disease. However, FDG-PET has some limitations, since there is a good portion of MM patients who are false-negative. Besides enhanced glycolysis, glutamine (Gln) addiction has been recently described as a metabolic feature of MM by our group. To sustain high Gln demand, MM cells increase the expression of several Gln transporters (ASCT2, SNAT1, LAT1) and are endowed with fast Gln uptake. Yet, at variance with other Gln-addicted cancers, the possible exploitation of Gln as a PET tracer in MM has never been assessed and was investigated in this study. To this purpose, we have firstly synthesized enantiopure (2S,4R)-4-Fluoroglutamine (4-FGln) and validated it as a Gln analogue in human MM cell lines (RPMI8226 and JJN3) comparing its uptake with that of 3H-labelled Gln. The intracellular levels of 4-FGln were determined by HPLC-MS/MS employing a HILIC gradient separation and multiple reaction monitoring (MRM) detection. Both Gln and 4-FGln were actively accumulated by MM cells and exhibited a strong reciprocal competition, pointing to shared transporters. Inhibition analysis revealed that ASCT2 was the major entry route of both compounds, with minor contributions from the other transporters. However, compared with Gln, 4-FGln exhibited higher affinity for both ASCT2 and LAT1 transporters. On the basis of these results, we then tested [18F]4-FGln uptake for MM detection by Positron Emission Tomography (PET) in two different in vivo murine models. Firstly, to investigate sensitivity of human MM to [18F]4-FGln in vivo, JJN3 cells were subcutaneously injected in immunodeficient NSG mice In this xenograft model, [18F]4-FGln- and[18F]FDG-PET scans were performed after plasmacytomas became palpable and repeated after one week. All the tumours were positive for [18F]FDG and displayed [18F]4-FGln uptake with Standard Uptake Values (SUV) of 1.21±1.9 and 0.99±0.07 after 2 weeks, respectively. Thereafter, the effect of bortezomib (BOR) was investigated to evaluate the potential use of [18F]4-FGln to monitor anti-MM treatment. Ten NGS mice were injected with JJN3 cells and, after 14 days, treated twice weekly with BOR, 1mg/kg, or vehicle for two weeks. PET scans were performed before and after 5 and 12 days of BOR treatment. As expected, BOR reduced tumour size as compared to vehicle. At the first post-BOR PET scan, [18F]4-FGln (SUV mean: pre 0.85±0.31; post 0.45±0.10, P<0.05), but not [18F]FDG (SUV mean: pre 0.97±0.38, post 0.75±0.14) was already significantly reduced: [18F]FDG and [18F]4-FGln uptake was reduced of 22 and 45% respectively. With both radiotracers, BOR treated animals displayed SUV mean values significantly lower than those of vehicle treated animals at post treatment PET (SUV means [18F ]FDG: BOR 0.75±0.14; vehicle 1.27±0.34, P<0.05; SUV mean [18F]4-FGln: BOR 0.45±0.10 ; vehicle: 0.73±0.18 ; P <0.05). Thereafter, to mimic BOR-resistant MM in a syngeneic mouse model, C57BL/6 mice were injected intravenously with Vk12598 cells obtained from transgenic Vk*MYC mice repeatedly treated with sub-optimal doses of BOR. Upon injection into C57BL/6 mice, Vk12598 cells colonize the BM without lytic lesions and extensively colonize the spleen generating an aggressive MM that brings animals to death within five weeks. PET scans were performed with [18F]4-FGln and [18F]FDG before Vk*MYC MM cells injection and after three, four and five weeks. Blood samples for M-spike evaluation were obtained in parallel. Four weeks after MM cells injection a significant increase of both [18F]4-FGln and [18F]FDG uptake was detected in spleens (SUV mean: 1.14±0.23, P=0.018; 0.94±0.24, P= 0.005). In both MM models, the volume of distribution of [18F]4-F-Gln did not overlap that of [18F]FDG. In conclusion, our data indicate that [18F]-(2S,4R)-4-Fluoroglutamine is a new potential PET tracer in pre-clinical MM models especially of extramedullary disease, either in a BOR-sensitive or in a BOR-resistant context, supporting the exploitation of Gln addiction for diagnostic purposes in MM patients. Disclosures Giuliani: Janssen: Research Funding.


2014 ◽  
Vol 13 (10) ◽  
pp. 1434-1443
Author(s):  
Nicole Cauchon ◽  
Haroutioun M. Hasséssian ◽  
Eric Turcotte ◽  
Roger Lecomte ◽  
Johan E. van Lier

Dynamic positron emission tomography (PET), combined with constant infusion of 2-deoxy-2-[18F]fluoro-d-glucose (FDG), enables real-time monitoring of transient metabolic changesin vivo, which can serve to understand the underlying physiology.


2005 ◽  
Vol 152 (4) ◽  
pp. 521-525 ◽  
Author(s):  
Athina Markou ◽  
Patrick Manning ◽  
Banu Kaya ◽  
Sam N Datta ◽  
Jamshed B Bomanji ◽  
...  

We report a case of a young woman with Cushing’s syndrome (CS), in whom although endocrine investigations and negative pituitary imaging were suggestive of ectopic ACTH secretion, the results of inferior petrosal sinus (IPS) sampling after coricotropin-releasing hormone (CRH) stimulation were suggestive of pituitary ACTH hypersecretion. 111In-labelled octreotide and high-resolution computer tomography (CT) revealed a lesion possibly responsible for the ACTH source in the thymus. Thymectomy confirmed concomitant ectopic CRH and probable ACTH production by a thymic neuroendocrine carcinoma. After an 8-year remission period the patient developed a clinical and biochemical relapse. A high-resolution computed tomography (CT) scan of the thorax showed a 2-cm nodule in the thymic bed, which was positive on a [18F]fluoro-2-deoxy-d-glucose ([18F]FDG) positron emission tomography (PET) scan. However, a repeated thymectomy did not result in remission. A repeat [18F]FDG PET study showed persistent disease in the thymic bed and also uptake in the adrenals. The patient underwent bilateral adrenalectomy, which resulted in clinical remission. A further [18F]FDG PET scan 8 months later showed no progression of the thymic tumor and confirmed complete excision of the adrenals. This is a rare case of concomitant CRH and ACTH secretion from a thymic carcinoid tumor; the case illustrates the usefulness of functional imaging with [18F]FDG PET in the diagnosis, management and follow-up of neuroendocrine tumors.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Carlos Velasco ◽  
Adriana Mota-Cobián ◽  
Jesús Mateo ◽  
Samuel España

Abstract Background Multi-tracer positron emission tomography (PET) imaging can be accomplished by applying multi-tracer compartment modeling. Recently, a method has been proposed in which the arterial input functions (AIFs) of the multi-tracer PET scan are explicitly derived. For that purpose, a gamma spectroscopic analysis is performed on blood samples manually withdrawn from the patient when at least one of the co-injected tracers is based on a non-pure positron emitter. Alternatively, these blood samples required for the spectroscopic analysis may be obtained and analyzed on site by an automated detection device, thus minimizing analysis time and radiation exposure of the operating personnel. In this work, a new automated blood sample detector based on silicon photomultipliers (SiPMs) for single- and multi-tracer PET imaging is presented, characterized, and tested in vitro and in vivo. Results The detector presented in this work stores and analyzes on-the-fly single and coincidence detected events. A sensitivity of 22.6 cps/(kBq/mL) and 1.7 cps/(kBq/mL) was obtained for single and coincidence events respectively. An energy resolution of 35% full-width-half-maximum (FWHM) at 511 keV and a minimum detectable activity of 0.30 ± 0.08 kBq/mL in single mode were obtained. The in vivo AIFs obtained with the detector show an excellent Pearson’s correlation (r = 0.996, p < 0.0001) with the ones obtained from well counter analysis of discrete blood samples. Moreover, in vitro experiments demonstrate the capability of the detector to apply the gamma spectroscopic analysis on a mixture of 68Ga and 18F and separate the individual signal emitted from each one. Conclusions Characterization and in vivo evaluation under realistic experimental conditions showed that the detector proposed in this work offers excellent sensibility and stability. The device also showed to successfully separate individual signals emitted from a mixture of radioisotopes. Therefore, the blood sample detector presented in this study allows fully automatic AIFs measurements during single- and multi-tracer PET studies.


Sign in / Sign up

Export Citation Format

Share Document