Dendritic cells can be rapidly expanded ex vivo and safely administered in patients with metastatic breast cancer

2004 ◽  
Vol 53 (9) ◽  
pp. 777-785 ◽  
Author(s):  
E. Claire Dees ◽  
Karen P. McKinnon ◽  
Jennifer J. Kuhns ◽  
Kathryn A. Chwastiak ◽  
Scotty Sparks ◽  
...  
2019 ◽  
pp. 1-12 ◽  
Author(s):  
Titia G. Meijer ◽  
Nicole S. Verkaik ◽  
Carolien H.M. van Deurzen ◽  
Hendrikus-Jan Dubbink ◽  
T. Dorine den Toom ◽  
...  

PURPOSE Biomarkers that predict response to poly (ADP-ribose) polymerase inhibitors (PARPis) are required to detect PARPi sensitivity beyond germline BRCA-mutated (gBRCAm) cancers and PARPi resistance among reverted gBRCAm cancers. Therefore, we previously developed the Repair Capacity (RECAP) test, a functional homologous recombination (HR) assay that exploits the formation of RAD51 foci in proliferating cells after ex vivo irradiation of fresh primary breast cancer tissue. The aim of the current study was to validate the feasibility of this test on histologic biopsy specimens from metastatic breast cancer and to explore the utility of the RECAP test as a predictive tool for treatment with DNA-damaging agents, such as PARPis. METHODS Fresh tissue biopsies from easily accessible metastatic lesions from patients with locally advanced or metastatic breast cancer were irradiated with 5 Gy and cultured for 2 hours followed by detection of RAD51 foci presence (HR proficient) or absence (HR deficient [HRD]). HRD biopsy specimens as well as platinum/PARP-resistant specimens were subjected to BRCA1/2 sequencing. RESULTS RECAP had a success rate of 93% on biopsy specimens from metastatic breast cancer lesions (n = 44). Although HRD was detected in 13 (32%) of 41 specimens, only five showed a gBRCAm. In three patients with gBRCAm, post-treatment RECAP tests showed HR phenotype reversion after in vivo progressive disease on platinum and PARPi treatment, which was explained in one patient by a secondary BRCA1 mutation. CONCLUSION The RECAP test, which reflects real-time HR status regardless of BRCA mutations, is feasible in metastatic breast cancer biopsy specimens. Compared with gBRCA analysis, it may identify twice as many candidates for PARPi treatment.


BMC Medicine ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Sara Charmsaz ◽  
Ben Doherty ◽  
Sinéad Cocchiglia ◽  
Damir Varešlija ◽  
Attilio Marino ◽  
...  

Abstract Background Metastatic breast cancer is a major cause of cancer-related deaths in woman. Brain metastasis is a common and devastating site of relapse for several breast cancer molecular subtypes, including oestrogen receptor-positive disease, with life expectancy of less than a year. While efforts have been devoted to developing therapeutics for extra-cranial metastasis, drug penetration of blood–brain barrier (BBB) remains a major clinical challenge. Defining molecular alterations in breast cancer brain metastasis enables the identification of novel actionable targets. Methods Global transcriptomic analysis of matched primary and metastatic patient tumours (n = 35 patients, 70 tumour samples) identified a putative new actionable target for advanced breast cancer which was further validated in vivo and in breast cancer patient tumour tissue (n = 843 patients). A peptide mimetic of the target’s natural ligand was designed in silico and its efficacy assessed in in vitro, ex vivo and in vivo models of breast cancer metastasis. Results Bioinformatic analysis of over-represented pathways in metastatic breast cancer identified ADAM22 as a top ranked member of the ECM-related druggable genome specific to brain metastases. ADAM22 was validated as an actionable target in in vitro, ex vivo and in patient tumour tissue (n = 843 patients). A peptide mimetic of the ADAM22 ligand LGI1, LGI1MIM, was designed in silico. The efficacy of LGI1MIM and its ability to penetrate the BBB were assessed in vitro, ex vivo and in brain metastasis BBB 3D biometric biohybrid models, respectively. Treatment with LGI1MIM in vivo inhibited disease progression, in particular the development of brain metastasis. Conclusion ADAM22 expression in advanced breast cancer supports development of breast cancer brain metastasis. Targeting ADAM22 with a peptide mimetic LGI1MIM represents a new therapeutic option to treat metastatic brain disease.


2006 ◽  
Vol 5 (8) ◽  
pp. 1975-1985 ◽  
Author(s):  
Hakan Akbulut ◽  
Yucheng Tang ◽  
K. Gonca Akbulut ◽  
Jonathan Maynard ◽  
Lixin Zhang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mariane Le Fur ◽  
Alana Ross ◽  
Pamela Pantazopoulos ◽  
Nicholas Rotile ◽  
Iris Zhou ◽  
...  

Abstract Background In our earlier work, we identified microRNA-10b (miR10b) as a master regulator of the viability of metastatic tumor cells. This knowledge allowed us to design a miR10b-targeted therapeutic consisting of an anti-miR10b antagomir conjugated to ultrasmall iron oxide nanoparticles (MN), termed MN-anti-miR10b. In mouse models of breast cancer, we demonstrated that MN-anti-miR10b caused durable regressions of established metastases with no evidence of systemic toxicity. As a first step towards translating MN-anti-miR10b for the treatment of metastatic breast cancer, we needed to determine if MN-anti-miR10b, which is so effective in mice, will also accumulate in human metastases. Results In this study, we devised a method to efficiently radiolabel MN-anti-miR10b with Cu-64 (64Cu) and evaluated the pharmacokinetics and biodistribution of the radiolabeled product at two different doses: a therapeutic dose, referred to as macrodose, corresponding to 64Cu-MN-anti-miR10b co-injected with non-labeled MN-anti-miR10b, and a tracer-level dose of 64Cu-MN-anti-miR10b, referred to as microdose. In addition, we evaluated the uptake of 64Cu-MN-anti-miR10b by metastatic lesions using both in vivo and ex vivo positron emission tomography–magnetic resonance imaging (PET–MRI). A comparable distribution of the therapeutic was observed after administration of a microdose or macrodose. Uptake of the therapeutic by metastatic lymph nodes, lungs, and bone was also demonstrated by PET–MRI with a significantly higher PET signal than in the same organs devoid of metastatic lesions. Conclusion Our results demonstrate that PET–MRI following a microdose injection of the agent will accurately reflect the innate biodistribution of the therapeutic. The tools developed in the present study lay the groundwork for the clinical testing of MN-anti-miR10b and other similar therapeutics in patients with cancer.


Sign in / Sign up

Export Citation Format

Share Document