tumor dormancy
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 38)

H-INDEX

39
(FIVE YEARS 5)

2021 ◽  
Vol 9 ◽  
Author(s):  
Gloria Pelizzo ◽  
Federica Riva ◽  
Stefania Croce ◽  
Maria Antonietta Avanzini ◽  
Gloria Acquafredda ◽  
...  

The explanation for cancer recurrence still remains to be fully elucidated. Moreover, tumor dormancy, which is a process whereby cells enter reversible G0 cell cycle arrest, appears to be a critical step in this phenomenon. We evaluated the cell cycle proliferation pattern in pediatric tumor-derived mesenchymal stromal cells (MSCs), in order to provide a better understanding of the complex mechanisms underlying cancer dormancy. Specimens were obtained from 14 pediatric patients diagnosed with solid tumors and submitted to surgery. Morphology, phenotype, differentiation, immunological capacity, and proliferative growth of tumor MSCs were studied. Flow cytometric analysis was performed to evaluate the cell percentage of each cell cycle phase. Healthy donor bone marrow-derived mesenchymal stromal cells (BM-MSCs) were employed as controls. It was noted that the DNA profile of proliferating BM-MSC was different from that of tumor MSCs. All BM-MSCs expressed the typical DNA profile of proliferating cells, while in all tumor MSC samples, ≥70% of the cells were detected in the G0/G1 phase. In particular, seven tumor MSC samples displayed intermediate cell cycle behavior, and the other seven tumor MSC samples exhibited a slow cell cycle. The increased number of tumor MSCs in the G0–G1 phase compared with BM-MSCs supports a role for quiescent MSCs in tumor dormancy regulation. Understanding the mechanisms that promote dormant cell cycle arrest is essential in identifying predictive markers of recurrence and to promote a dedicated surgical planning.


Author(s):  
Linxian Zhao ◽  
Kai Zhang ◽  
Hongyu He ◽  
Yongping Yang ◽  
Wei Li ◽  
...  

Tumor dormancy, a state of tumor, is clinically undetectable and the outgrowth of dormant tumor cells into overt metastases is responsible for cancer-associated deaths. However, the dormancy-related molecular mechanism has not been clearly described. Some researchers have proposed that cancer stem cells (CSCs) and disseminated tumor cells (DTCs) can be seen as progenitor cells of tumor dormancy, both of which can remain dormant in a non-permissive soil/niche. Nowadays, research interest in the cancer biology field is skyrocketing as mesenchymal stem cells (MSCs) are capable of regulating tumor dormancy, which will provide a unique therapeutic window to cure cancer. Although the influence of MSCs on tumor dormancy has been investigated in previous studies, there is no thorough review on the relationship between MSCs and tumor dormancy. In this paper, the root of tumor dormancy is analyzed and dormancy-related molecular mechanisms are summarized. With an emphasis on the role of the MSCs during tumor dormancy, new therapeutic strategies to prevent metastatic disease are proposed, whose clinical application potentials are discussed, and some challenges and prospects of the studies of tumor dormancy are also described.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4916
Author(s):  
Julie S. Di Martino ◽  
Tasmiah Akhter ◽  
Jose Javier Bravo-Cordero

While most primary tumors can be effectively treated, therapeutics fail to efficiently eliminate metastases. Metastases arise from cancer cells that leave the primary tumor and seed distant sites. Recent studies have shown that cancer cells disseminate early during tumor progression and can remain dormant for years before they resume growth. In these metastatic organs, cancer cells reside in microenvironments where they interact with other cells, but also with the extracellular matrix (ECM). The ECM was long considered to be an inert, non-cellular component of tissues, providing their architecture. However, in recent years, a growing body of evidence has shown that the ECM is a key driver of cancer progression, and it can exert effects on tumor cells, regulating their metastatic fate. ECM remodeling and degradation is required for the early steps of the metastatic cascade: invasion, tumor intravasation, and extravasation. Similarly, ECM molecules have been shown to be important for metastatic outgrowth. However, the role of ECM molecules on tumor dormancy and their contribution to the dormancy-supportive niches is not well understood. In this perspective article, we will summarize the current knowledge of ECM and its role in tumor metastasis and dormancy. We will discuss how a better understanding of the individual components of the ECM niche and their roles mediating the dormant state of disseminated tumor cells (DTCs) will advance the development of new therapies to target dormant cells and prevent metastasis outgrowth.


Author(s):  
Xiao Yang ◽  
Jia-shun Wu ◽  
Mao Li ◽  
Wei-long Zhang ◽  
Xiao-lei Gao ◽  
...  

Abstract Background Patients were prone to have poor prognosis once dormant tumor cells being reactivated. However, the molecular mechanism of tumor cell dormancy remains poorly understood. This study aimed to investigate the function of DEC2 in the dormancy of salivary adenoid cystic carcinoma (SACC) in vitro and vivo. Methods The function of DEC2 in tumor dormancy of SACC was investigated in nude mice by establishing primary and lung metastasis model. Meanwhile, the interaction between hypoxia and SACC dormancy and the role of DEC2 were demonstrated through CoCl2 induced hypoxia–mimicking microenvironments. Furthermore, the expression of DEC2 was detected by immunohistochemical staining in primary SACC samples with and without recurrence. Results In the primary SACC, DEC2 overexpression inhibited cell proliferation, increased cell population arrested in G0/G1 phase, and participated in dormancy regulation, which limited tumor growth. Intriguingly, in the model of lung metastasis, the level of DEC2 was reduced significantly and resulted in dormancy exit and growth resumption of SACC cells. Then, we found that DEC2 may associate with hypoxia in contributing to tumor dormancy, which might provide a possible cue to explain the different roles of DEC2 in primary and metastasis lesions. And overexpression of DEC2 induced dormancy and promoted migration and invasion through activating EMT program. Finally, DEC2 positive expression was shown to be significantly correlated with recurrence and dormancy of SACC patients. Conclusions These findings provide a novel insight into the role of DEC2 gene in tumor dormancy and metastasis.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2026
Author(s):  
Romano Demicheli ◽  
Elia Biganzoli

The problem of late recurrence in breast cancer has recently gained attention and was also addressed in an international workshop held in Toronto (ON, Canada), in which several aspects of the question were examined. This Commentary offers a few considerations, which may be useful for the ongoing investigations. A few premises are discussed: (a) clinical recurrences, especially the late ones, imply periods of tumor dormancy; (b) a structured pattern of distant metastases appearance is detectable in both early and late follow-up times; (c) the current general paradigm underlying neoplastic treatments, i.e., that killing all cancer cells is the only way to control the disease, which is strictly sprouting from the somatic mutation theory, should be re-considered. Finally, a few research approaches are suggested.


Sign in / Sign up

Export Citation Format

Share Document