Personality and behavioral syndromes in two Peromyscus species: presence, lack of state dependence, and lack of association with home range size

2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Victoria Underhill ◽  
Gregory G. Pandelis ◽  
Jeremy Papuga ◽  
Anne C. Sabol ◽  
Austin Rife ◽  
...  
2019 ◽  
Vol 20 (2) ◽  
pp. 351
Author(s):  
Marina Kipson ◽  
Martin Šálek ◽  
Radek Lučan ◽  
Marcel Uhrin ◽  
Edita Maxinová ◽  
...  

Author(s):  
Matthew S. Kendall ◽  
Laughlin Siceloff ◽  
Ashley Ruffo ◽  
Arliss Winship ◽  
Mark E. Monaco

AbstractSurprisingly, little is known about basic life history of the largest moray eel species in the Caribbean region, the green moray eel (Gymnothorax funebris). Sixteen eels were captured from the mangrove fringe in multiple bays on St. Croix, USVI, implanted with coded acoustic transmitters, and their movements were tracked for up to 11 months using an array of 37 stationary acoustic receivers. They exhibited high site fidelity in the bays during their residence, using the same general parts of individual bays and did not switch bays except for one individual. There was no relationship between eel size (mean TL = 83 cm, range = 54–126 cm) and home range size (mean area of 95% KUD = 5.8 ha ± 0.7 SE). Most individuals were more frequently detected at night than during the day suggesting greater nocturnal activity. Several of the larger eels (mean TL = 93 cm ± 5.9 SE) showed clear and permanent emigration tracks out of the mangrove estuary to coral reef habitats offshore. For some individuals, these habitat shifts were preceded by exploratory movements away from the eel’s typical home range the night before emigration. All final emigration events took place nocturnally, happened during a single night, and occurred during months from December to May. Mean emigration speed was 3.4 km/h. This study is the first documentation of an ontogenetic habitat shift in moray eels, as well as the first determination of home range size for this species and their site fidelity in mangrove habitats.


2021 ◽  
Author(s):  
A. M. Stobo‐Wilson ◽  
T. Cremona ◽  
B. P. Murphy ◽  
S. M. Carthew

PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0120513 ◽  
Author(s):  
Susanna E. Kitts-Morgan ◽  
Kyle C. Caires ◽  
Lisa A. Bohannon ◽  
Elizabeth I. Parsons ◽  
Katharine A. Hilburn

ISRN Zoology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Craig M. Thompson ◽  
Eric M. Gese

Swift foxes (Vulpes velox) are an endemic mesocarnivore of North America subject to resource and predation-based pressures. While swift fox demographics have been documented, there is little information on the importance of top-down versus bottom-up pressures or the effect of landscape heterogeneity. Using a consumable resource-based ideal free distribution model as a conceptual framework, we isolated the effects of resource-based habitat selection on fox population ecology. We hypothesized if swift fox ecology is predominantly resource dependant, distribution, survival, and space use would match predictions made under ideal free distribution theory. We monitored survival and home range use of 47 swift foxes in southeastern Colorado from 2001 to 2004. Annual home range size was 15.4 km2, and seasonal home range size was 10.1 km2. At the individual level, annual home range size was unrelated to survival. Estimates of fox density ranged from 0.03 to 0.18 foxes/km2. Seasonal survival rates were 0.73 and 1.0 and did not differ seasonally. Foxes conformed to the predictions of the ideal free distribution model during winter, indicating foxes are food stressed and their behavior governed by resource acquisition. During the rest of the year, behavior was not resource driven and was governed by security from intraguild predation.


2009 ◽  
Vol 36 (5) ◽  
pp. 422 ◽  
Author(s):  
K. E. Moseby ◽  
J. Stott ◽  
H. Crisp

Control of introduced predators is critical to both protection and successful reintroduction of threatened prey species. Efficiency of control is improved if it takes into account habitat use, home range and the activity patterns of the predator. These characteristics were studied in feral cats (Felis catus) and red foxes (Vulpes vulpes) in arid South Australia, and results are used to suggest improvements in control methods. In addition, mortality and movement patterns of cats before and after a poison-baiting event were compared. Thirteen cats and four foxes were successfully fitted with GPS data-logger radio-collars and tracked 4-hourly for several months. High intra-specific variation in cat home-range size was recorded, with 95% minimum convex polygon (MCP) home ranges varying from 0.5 km2 to 132 km2. Cat home-range size was not significantly different from that of foxes, nor was there a significant difference related to sex or age. Cats preferred habitat types that support thicker vegetation cover, including creeklines and sand dunes, whereas foxes preferred sand dunes. Cats used temporary focal points (areas used intensively over short time periods and then vacated) for periods of up to 2 weeks and continually moved throughout their home range. Aerial baiting at a density of 10 baits per km2 was ineffective for cats because similar high mortality rates were recorded for cats in both baited and unbaited areas. Mortality was highest in young male cats. Long-range movements of up to 45 km in 2 days were recorded in male feral cats and movement into the baited zone occurred within 2 days of baiting. Movement patterns of radio-collared animals and inferred bait detection distances were used to suggest optimum baiting densities of ~30 baits per km2 for feral cats and 5 per km2 for foxes. Feral cats exhibited much higher intra-specific variation in activity patterns and home-range size than did foxes, rendering them a potentially difficult species to control by a single method. Control of cats and foxes in arid Australia should target habitats with thick vegetation cover and aerial baiting should ideally occur over areas of several thousand square kilometres because of large home ranges and long-range movements increasing the chance of fast reinvasion. The use of temporary focal points suggested that it may take several days or even weeks for a cat to encounter a fixed trap site within their home range, whereas foxes should encounter them more quickly as they move further each day although they have a similar home-range size. Because of high intra-specific variability in activity patterns and home-range size, control of feral cats in inland Australia may be best achieved through a combination of control techniques.


2009 ◽  
Vol 4 (3) ◽  
pp. 229-234 ◽  
Author(s):  
Federico Pablo Kacoliris ◽  
Jorge Daniel Williams ◽  
Celeste Ruiz De Arcaute ◽  
Carla Cassino

Sign in / Sign up

Export Citation Format

Share Document