Susceptibility to Heavy Metals and Cadmium Accumulation in Aerobic and Anaerobic Thermophilic Microorganisms Isolated from Deep-Sea Hydrothermal Vents

2000 ◽  
Vol 41 (3) ◽  
pp. 201-205 ◽  
Author(s):  
Jenny Llanos ◽  
Clemente Capasso ◽  
Elio Parisi ◽  
Daniel Prieur ◽  
Christian Jeanthon
Author(s):  
Estelle Legin ◽  
Christine Ladrat ◽  
Anne Godfroy ◽  
Georges Barbier ◽  
Francis Duchiron

1985 ◽  
Vol 225 (1240) ◽  
pp. 277-297 ◽  

Circulation of seawater through the upper few kilometres of oceanic crust at tectonic spreading zones results in a transformation of geothermal into chemical energy. Reduced inorganic species are emitted from warm (under 25 °C) and hot (under 400 °C) vents on the sea floor at depths of 1600 and 3000 m and are used by chemolithotrophic bacteria as terrestrial sources of energy for the primary production of organic carbon from carbon dioxide. Thus, the rich and unique animal populations found in the immediate vicinity of the vents represent ecosystems that are largely or totally independent of solar energy. They subsist by means of a food chain that is based on various microbial processes. In addition to aerobic and anaerobic bacterial chemosynthesis, a new type of symbiosis between yet undescribed chemolithotrophic prokaryotes and certain invertebrates appears to account for the major part of the total primary production at the deep-sea vent sites.


Author(s):  
Gina Carole Oliver ◽  
Anaïs Cario ◽  
Karyn Lynne Rogers

High temperatures (HT) and high hydrostatic pressures (HHP) are characteristic of deep-sea hydrothermal vents and other deep crustal settings. These environments host vast and diverse microbial populations, yet only a small fraction of those populations have been successfully cultured. This is due, in part, to the difficulty of sampling while maintaining these in situ conditions and also replicating those high-temperature and high-pressure conditions in the laboratory. In an effort to facilitate more HT-HHP cultivation, we present two HT-HHP batch culture incubation systems for cultivating deep-sea vent and subsurface (hyper)thermophilic microorganisms. One HT-HHP system can be used for batch cultivation up to 110 MPa and 121°C, and requires sample decompression during subsampling. The second HT-HHP system can be used to culture microorganisms up to 100 MPa and 160°C with variable-volume, pressure-retaining vessels that negate whole-sample decompression during subsampling. Here, we describe how to build cost effective heating systems for these two types of high-pressure vessels, as well as the protocols for HT-HHP microbial batch cultivation in both systems. Additionally, we demonstrate HHP transfer between the variable-volume vessels, which has utility in sampling and enrichment without decompression, laboratory isolation experiments, as well as HHP filtration.


2004 ◽  
Vol 70 (4) ◽  
pp. 2551-2555 ◽  
Author(s):  
Virginia P. Edgcomb ◽  
Stephen J. Molyneaux ◽  
Mak A. Saito ◽  
Karen Lloyd ◽  
Simone Böer ◽  
...  

ABSTRACT The chemical stress factors for microbial life at deep-sea hydrothermal vents include high concentrations of heavy metals and sulfide. Three hyperthermophilic vent archaea, the sulfur-reducing heterotrophs Thermococcus fumicolans and Pyrococcus strain GB-D and the chemolithoautotrophic methanogen Methanocaldococcus jannaschii, were tested for survival tolerance to heavy metals (Zn, Co, and Cu) and sulfide. The sulfide addition consistently ameliorated the high toxicity of free metal cations by the formation of dissolved metal-sulfide complexes as well as solid precipitates. Thus, chemical speciation of heavy metals with sulfide allows hydrothermal vent archaea to tolerate otherwise toxic metal concentrations in their natural environment.


2001 ◽  
Vol 67 (10) ◽  
pp. 4566-4572 ◽  
Author(s):  
Barbara J. Campbell ◽  
Christian Jeanthon ◽  
Joel E. Kostka ◽  
George W. Luther ◽  
S. Craig Cary

ABSTRACT Recent molecular characterizations of microbial communities from deep-sea hydrothermal sites indicate the predominance of bacteria belonging to the epsilon subdivision of Proteobacteria(epsilon Proteobacteria). Here, we report the first enrichments and characterizations of four epsilonProteobacteria that are directly associated withAlvinella pompejana, a deep sea hydrothermal vent polychete, or with hydrothermal vent chimney samples. These novel bacteria were moderately thermophilic sulfur-reducing heterotrophs growing on formate as the energy and carbon source. In addition, two of them (Am-H and Ex-18.2) could grow on sulfur lithoautrotrophically using hydrogen as the electron donor. Optimal growth temperatures of the bacteria ranged from 41 to 45°C. Phylogenetic analysis of the small-subunit ribosomal gene of the two heterotrophic bacteria demonstrated 95% similarity to Sulfurospirillum arcachonense, an epsilon Proteobacteria isolated from an oxidized marine surface sediment. The autotrophic bacteria grouped within a deeply branching clade of the epsilonProteobacteria, to date composed only of uncultured bacteria detected in a sample from a hydrothermal vent along the mid-Atlantic ridge. A molecular survey of various hydrothermal vent environments demonstrated the presence of two of these bacteria (Am-N and Am-H) in more than one geographic location and habitat. These results suggest that certain epsilonProteobacteria likely fill important niches in the environmental habitats of deep-sea hydrothermal vents, where they contribute to overall carbon and sulfur cycling at moderate thermophilic temperatures.


Author(s):  
Sabine Stöhr ◽  
Michel Segonzac

The animal communities associated with the deep-sea reducing environment have been studied for almost 30 years, but until now only a single species of ophiuroid, Ophioctenella acies, has been found at both hydrothermal vents and methane cold seeps. Since the faunal overlap between vent and seep communities is small and many endemic species have been found among other taxa (e.g. Mollusca, Crustacea), additional species of ophiuroids were expected at previously unstudied sites. Chemical compositions at reducing sites differ greatly from the nearby bathyal environment. Generally, species adapted to chemosynthetic environments are not found in non-chemosynthetic habitats, but occasional visitors of other bathyal species to vent and seep sites have been recorded among many taxa except ophiuroids. This paper presents an analysis of the ophiuroid fauna found at hydrothermal vents and non-reducing nearby sites on the Mid-Atlantic Ridge and on methane cold seeps in the Gulf of Mexico, at Blake Ridge off South Carolina and south of Barbados. In addition to O. acies, four species were found at vents, Ophiactis tyleri sp. nov., Ophiocten centobi, Ophiomitra spinea and Ophiotreta valenciennesi rufescens. While Ophioctenella acies appears to be restricted to chemosynthetic areas, the other four species were also found in other bathyal habitats. They also occur in low numbers (mostly single individuals), whereas species adapted to hydrothermal areas typically occur in large numbers. Ophioscolex tripapillatus sp. nov. and Ophiophyllum atlanticum sp. nov. are described from nearby non-chemosynthetic sites. In a cold seep south of Barbados, three species of ophiuroids were found, including Ophioctenella acies, Amphiura sp., Ophiacantha longispina sp. nov. and Ophioplinthaca chelys. From the cold seeps at Blake Ridge and the Gulf of Mexico, Ophienigma spinilimbatum gen. et sp. nov. is described, likely restricted to the reducing environment. Ophiotreta valenciennesi rufescens occurred abundantly among Lophelia corals in the Gulf of Mexico seeps, which is the first record of this species from the West Atlantic. Habitat descriptions complement the taxonomic considerations, and the distribution of the animals in reducing environments is discussed.


Sign in / Sign up

Export Citation Format

Share Document