Glycoside and Polysaccharide Hydrolase Activity of the Rumen Anaerobic Fungus Caecomyces communis ( Sphaeromonas communis SENSU ORPIN) at Early and Final Stages of the Developmental Cycle

1996 ◽  
Vol 32 (5) ◽  
pp. 256-259 ◽  
Author(s):  
Corinne Gerbi ◽  
Jacqueline Bata ◽  
André Breton ◽  
Gérard Prensier
1985 ◽  
Vol 51 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Toshio ONISHI ◽  
Mampei SUZUKI ◽  
Ryo KIKUCHI

Author(s):  
Jason R. Swedlow ◽  
Neil Osheroff ◽  
Tim Karr ◽  
John W. Sedat ◽  
David A. Agard

DNA topoisomerase II is an ATP-dependent double-stranded DNA strand-passing enzyme that is necessary for full condensation of chromosomes and for complete segregation of sister chromatids at mitosis in vivo and in vitro. Biochemical characterization of chromosomes or nuclei after extraction with high-salt or detergents and DNAse treatment showed that topoisomerase II was a major component of this remnant, termed the chromosome scaffold. The scaffold has been hypothesized to be the structural backbone of the chromosome, so the localization of topoisomerase II to die scaffold suggested that the enzyme might play a structural role in the chromosome. However, topoisomerase II has not been studied in nuclei or chromosomes in vivo. We have monitored the chromosomal distribution of topoisomerase II in vivo during mitosis in the Drosophila embryo. This embryo forms a multi-nucleated syncytial blastoderm early in its developmental cycle. During this time, the embryonic nuclei synchronously progress through 13 mitotic cycles, so this is an ideal system to follow nuclear and chromosomal dynamics.


Author(s):  
Priscilla Masamba ◽  
Geraldene Munsamy ◽  
Abidemi Paul Kappo

Background: For decades, Praziquantel has been the undisputed drug of choice for all schistosome infections, but rising concerns due to the unelucidated mechanism of action of the drug and unavoidable reports of emerging drug resistant strains has necessitated the need for alternative treatment drug. Moreover, current apprehension has been reinforced by total dependence on the drug for treatment hence, the search for novel and effective anti-schistosomal drugs. Uses: This study made use of bioinformatic tools to determine the structural binding of the Universal G4LZI3 stress protein (USP) in complex with ten polyphenol compounds, thereby highlighting the effectiveness of these recently identified ‘lead’ molecules in the design of novel therapeutics targeted against schistosomiasis. Upregulation of the G4LZI3 USP throughout the schistosome multifaceted developmental cycle sparks interest in its potential role as a druggable target. The integration of in silico tools provides an atomistic perspective into the binding of potential inhibitors to target proteins. Conclusion: This study therefore, implemented the use of molecular dynamic (MD) simulations to provide functional and structural insight into key conformational changes upon binding of G4ZLI3 to these key phenolic compounds. Post-MD analyses revealed unique structural and conformational changes in the G4LZI3 protein in complex with curcumin and catechin respectively. These systems exhibited the highest binding energies, while the major interacting residues conserved in all the complexes provides a route map for structure-based drug design of novel compounds with enhanced inhibitory potency against the G4LZI3 protein. This study suggests an alternative approach for the development of anti-schistosomal drugs using natural compounds.


1989 ◽  
Vol 171 (2) ◽  
pp. 708-713 ◽  
Author(s):  
W Q Xie ◽  
B A Whitton ◽  
J W Simon ◽  
K Jäger ◽  
D Reed ◽  
...  

1978 ◽  
Vol 19 (5) ◽  
pp. 654-656
Author(s):  
H Tornqvist ◽  
P Björgell ◽  
L Krabisch ◽  
P Belfrage

Sign in / Sign up

Export Citation Format

Share Document