Quantitative detection of transgenes in soybean [Glycine max (L.) Merrill] and peanut (Arachis hypogaea L.) by real-time polymerase chain reaction

2001 ◽  
Vol 20 (5) ◽  
pp. 422-428 ◽  
Author(s):  
M. Schmidt ◽  
W. Parrott
2010 ◽  
Vol 134 (3) ◽  
pp. 444-448 ◽  
Author(s):  
Zhengming Gu ◽  
Jianmin Pan ◽  
Matthew J. Bankowski ◽  
Randall T. Hayden

Abstract Context.—BK virus infections among immunocompromised patients are associated with disease of the kidney or urinary bladder. High viral loads, determined by quantitative polymerase chain reaction (PCR), have been correlated with clinical disease. Objective.—To develop and evaluate a novel method for real-time PCR detection and quantification of BK virus using labeled primers. Design.—Patient specimens (n = 54) included 17 plasma, 12 whole blood, and 25 urine samples. DNA was extracted using the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche Applied Science, Indianapolis, Indiana); sample eluate was PCR-amplified using the labeled primer PCR method. Results were compared with those of a user-developed quantitative real-time PCR method (fluorescence resonance energy transfer probe hybridization). Results.—Labeled primer PCR detected less than 10 copies per reaction and showed quantitative linearity from 101 to 107 copies per reaction. Analytical specificity of labeled primer PCR was 100%. With clinical samples, labeled primer PCR demonstrated a trend toward improved sensitivity compared with the reference method. Quantitative assay comparison showed an R2 value of 0.96 between the 2 assays. Conclusions.—Real-time PCR using labeled primers is highly sensitive and specific for the quantitative detection of BK virus from a variety of clinical specimens. These data demonstrate the applicability of labeled primer PCR for quantitative viral detection and offer a simplified method that removes the need for separate oligonucleotide probes.


2009 ◽  
Vol 51 (4) ◽  
pp. 530-534 ◽  
Author(s):  
Hiroaki Murata ◽  
Ritsue Nii ◽  
Masahiro Ito ◽  
Toshiaki Ihara ◽  
Yoshihiro Komada

2014 ◽  
Vol 70 (3) ◽  
pp. 555-560 ◽  
Author(s):  
Naohiro Kishida ◽  
Naohiro Noda ◽  
Eiji Haramoto ◽  
Mamoru Kawaharasaki ◽  
Michihiro Akiba ◽  
...  

We describe an assay for simple and accurate quantification of human enteric adenoviruses (EAdVs) in water samples using a recently developed quantification method named microfluidic digital polymerase chain reaction (dPCR). The assay is based on automatic distribution of reaction mixture into a large number of nanolitre-volume reaction chambers and absolute copy number quantification from the number of chambers containing amplification products on the basis of Poisson statistics. This assay allows absolute quantification of target genes without the use of standard DNA. Concentrations of EAdVs in Japanese river water samples were successfully quantified by the developed dPCR assay. The EAdVs were detected in seven of the 10 samples (1 L each), and the concentration ranged from 420 to 2,700 copies/L. The quantified values closely resemble those by most probable number (MPN)-PCR and real-time PCR when standard DNA was validated by dPCR whereas they varied substantially when the standard was not validated. Accuracy and sensitivity of the dPCR was higher than those of real-time PCR and MPN-PCR. To our knowledge, this is the first study that has successfully quantified enteric viruses in river water using dPCR. This method will contribute to better understanding of existence of viruses in water.


Sign in / Sign up

Export Citation Format

Share Document