Spatiotemporal variation in home range size of female polar bears and correlations with individual contaminant load

Polar Biology ◽  
2015 ◽  
Vol 39 (8) ◽  
pp. 1479-1489 ◽  
Author(s):  
Floris M. van Beest ◽  
Jon Aars ◽  
Heli Routti ◽  
Elisabeth Lie ◽  
Magnus Andersen ◽  
...  
1999 ◽  
Vol 2 (5) ◽  
pp. 311-318 ◽  
Author(s):  
S.H. Ferguson ◽  
M.K. Taylor ◽  
E.W. Born ◽  
A. Rosing-Asvid ◽  
F. Messier

2019 ◽  
Vol 20 (2) ◽  
pp. 351
Author(s):  
Marina Kipson ◽  
Martin Šálek ◽  
Radek Lučan ◽  
Marcel Uhrin ◽  
Edita Maxinová ◽  
...  

Author(s):  
Matthew S. Kendall ◽  
Laughlin Siceloff ◽  
Ashley Ruffo ◽  
Arliss Winship ◽  
Mark E. Monaco

AbstractSurprisingly, little is known about basic life history of the largest moray eel species in the Caribbean region, the green moray eel (Gymnothorax funebris). Sixteen eels were captured from the mangrove fringe in multiple bays on St. Croix, USVI, implanted with coded acoustic transmitters, and their movements were tracked for up to 11 months using an array of 37 stationary acoustic receivers. They exhibited high site fidelity in the bays during their residence, using the same general parts of individual bays and did not switch bays except for one individual. There was no relationship between eel size (mean TL = 83 cm, range = 54–126 cm) and home range size (mean area of 95% KUD = 5.8 ha ± 0.7 SE). Most individuals were more frequently detected at night than during the day suggesting greater nocturnal activity. Several of the larger eels (mean TL = 93 cm ± 5.9 SE) showed clear and permanent emigration tracks out of the mangrove estuary to coral reef habitats offshore. For some individuals, these habitat shifts were preceded by exploratory movements away from the eel’s typical home range the night before emigration. All final emigration events took place nocturnally, happened during a single night, and occurred during months from December to May. Mean emigration speed was 3.4 km/h. This study is the first documentation of an ontogenetic habitat shift in moray eels, as well as the first determination of home range size for this species and their site fidelity in mangrove habitats.


2021 ◽  
Author(s):  
A. M. Stobo‐Wilson ◽  
T. Cremona ◽  
B. P. Murphy ◽  
S. M. Carthew

2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Victoria Underhill ◽  
Gregory G. Pandelis ◽  
Jeremy Papuga ◽  
Anne C. Sabol ◽  
Austin Rife ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0120513 ◽  
Author(s):  
Susanna E. Kitts-Morgan ◽  
Kyle C. Caires ◽  
Lisa A. Bohannon ◽  
Elizabeth I. Parsons ◽  
Katharine A. Hilburn

ISRN Zoology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Craig M. Thompson ◽  
Eric M. Gese

Swift foxes (Vulpes velox) are an endemic mesocarnivore of North America subject to resource and predation-based pressures. While swift fox demographics have been documented, there is little information on the importance of top-down versus bottom-up pressures or the effect of landscape heterogeneity. Using a consumable resource-based ideal free distribution model as a conceptual framework, we isolated the effects of resource-based habitat selection on fox population ecology. We hypothesized if swift fox ecology is predominantly resource dependant, distribution, survival, and space use would match predictions made under ideal free distribution theory. We monitored survival and home range use of 47 swift foxes in southeastern Colorado from 2001 to 2004. Annual home range size was 15.4 km2, and seasonal home range size was 10.1 km2. At the individual level, annual home range size was unrelated to survival. Estimates of fox density ranged from 0.03 to 0.18 foxes/km2. Seasonal survival rates were 0.73 and 1.0 and did not differ seasonally. Foxes conformed to the predictions of the ideal free distribution model during winter, indicating foxes are food stressed and their behavior governed by resource acquisition. During the rest of the year, behavior was not resource driven and was governed by security from intraguild predation.


Sign in / Sign up

Export Citation Format

Share Document