Large-scale genetic structure and diversity of Arctic rainbow smelt Osmerus dentex Steindachner et Kner, 1870 throughout its distributional range based on microsatellites

Polar Biology ◽  
2021 ◽  
Author(s):  
A. V. Semenova ◽  
A. N. Stroganov ◽  
E. V. Ponomareva ◽  
K. I. Afanas’ev ◽  
O. V. Vilkina
Mycologia ◽  
2021 ◽  
pp. 1-10
Author(s):  
María Belén Pildain ◽  
Paula Marchelli ◽  
María Marta Azpilicueta ◽  
Cristian Starik ◽  
Carolina Barroetaveña

Genetics ◽  
1997 ◽  
Vol 147 (2) ◽  
pp. 643-655 ◽  
Author(s):  
Kenneth G Ross ◽  
Michael J B Krieger ◽  
D DeWayne Shoemaker ◽  
Edward L Vargo ◽  
Laurent Keller

We describe genetic structure at various scales in native populations of the fire ant Solenopsis invicta using two classes of nuclear markers, allozymes and microsatellites, and markers of the mitochondrial genome. Strong structure was found at the nest level in both the monogyne (single queen) and polygyne (multiple queen) social forms using allozymes. Weak but significant microgeographic structure was detected above the nest level in polygyne populations but not in monogyne populations using both classes of nuclear markers. Pronounced mitochondrial DNA (mtDNA) differentiation was evident also at this level in the polygyne form only. These microgeographic patterns are expected because polygyny in ants is associated with restricted local gene flow due mainly to limited vagility of queens. Weak but significant nuclear differentiation was detected between sympatric social forms, and strong mtDNA differentiation also was found at this level. Thus, queens of each form seem unable to establish themselves in nests of the alternate type, and some degree of assortative mating by form may exist as well. Strong differentiation was found between the two study regions usinga all three sets of markers. Phylogeographic analyses of the mtDNA suggest that recent limitations on gene flow rather than longstanding barriers to dispersal are responsible for this large-scale structure.


2013 ◽  
Vol 43 (6) ◽  
pp. 978-984 ◽  
Author(s):  
Vanice Dias Oliveira ◽  
Allivia Rouse Carregosa Rabbani ◽  
Ana Veruska Cruz da Silva ◽  
Ana da Silva Lédo

This research had as objective to characterize genetically individuals of physic nut cultivated in experimental areas in Sergipe, Brazil by means of RAPD molecular markers. Leaves of 40 individuals were collected and DNA was isolated using CTAB 2% method. Were used 30 primers RAPD for DNA amplification, and this data was used to estimate the genetic similarity among the pairs of individuals, using Jaccard coefficient, and group them out for the UPGMA method. Also, the genetic structure and diversity of the populations were assessed using AMOVA. Of the 100 fragments generated, 29 of were polymorphic. A similarity average of 0.54 among the individuals was found and the amplitude similarities varied from 0.18 to 1.00. One of them (U5) was unit clusters and formed by the most divergent individuals. AMOVA indicated that there is more variation within (63%) the population. In conclusion, it was possible verify genetic variability in physic nut using RAPD markers at these experimental areas.


2019 ◽  
Author(s):  
Maria Angenica Fulo Regilme ◽  
Megumi Sato ◽  
Tsutomu Tamura ◽  
Reiko Arai ◽  
Marcello Otake Sato ◽  
...  

AbstractIxodid tick species such as Ixodes ovatus and Haemaphysalis flava are important vector of tick-borne diseases in Japan. In this study, we used genetic structure at two mitochondrial loci (cox1, 16S rRNA gene) to infer gene flow patterns of I. ovatus and H. flava from Niigata Prefecture, Japan. Samples were collected in 29 (I. ovatus) and 17 (H. flava) sampling locations across Niigata Prefecture (12,584.18 km2). For I. ovatus, pairwise FST and analysis of molecular variance (AMOVA) analyses of cox1 sequences indicated significant among-population differentiation. This was in contrast to H. flava, for which there were few cases of low significant pairwise differentiation. A Mantel test revealed isolation by distance and there was positive spatial autocorrelation of haplotypes in I. ovatus cox1 and 16S sequences, but non-significant results were observed in H. flava in both markers. We found three genetic groups (China 1, China 2 and Japan) in the cox1 I. ovatus tree. Newly sampled I. ovatus grouped together with a published I. ovatus sequence from northern Japan and were distinct from two other I. ovatus groups that were reported from southern China. The three genetic groups in our data set suggest the potential for cryptic species among the groups. While many factors can potentially account for the observed differences in genetic structure between the two species, including population persistence and large-scale patterns of range expansion, the differences in the mobility of hosts of tick immature stages (small mammals in I. ovatus; birds in H. flava) is possibly driving the observed patterns.


2020 ◽  
Author(s):  
Shengzhe Bian ◽  
Zeng Wenhong ◽  
Qiwen Li ◽  
Yinghui Li ◽  
Nai-Kei Wong ◽  
...  

AbstractCapsule-forming extracellular polysaccharides are crucial to bacterial host colonization, invasion, immune evasion and ultimately pathogenicity. Due to warming ocean waters and human encroachment of coastal ecosystems, Vibrio parahaemolyticus has emerged as a globally important food-borne enteropathogen implicated in acute gastroenteritis, wound infections, and septic shock. Conventionally, the antigenic properties of lipopolysaccharide (LPS, O antigen) and capsular polysaccharide (CPS, K antigen) have provided a basis for serotyping V. parahaemolyticus, while disclosure of genetic elements encoding 13 O-serogroups have allowed molecular serotyping methods to be developed. However, the genetic structure of CPS loci for 71 K-serogroups has remained unidentified, limiting progress in understanding its roles in V. parahaemolyticus pathophysiology. In this study, we identified and characterized the genetic structure and their evolutionary relationship of CPS loci of 40 K-serogroups through whole genome sequencing of 443 V. parahaemolyticus strains. We found a distinct pattern of CPS gene cluster across different K-serogroups, and expanded its new right-border by identifying glpX as a key gene conserved across all serotypes. A total of 217 genes involved in CPS biosynthesis were annotated. Functional contents and genetic structure of the 40 K-serogroups were analyzed. Based on inferences from species trees and gene trees, we proposed an evolution model of the CPS gene clusters of 40 K-serogroups. Horizontal gene transfer by recombination from other Vibrio species, gene duplication and nonsense mutations are likely to play instrumental roles in the evolution of CPS in V. parahaemolyticus. It is the first time, to the best of our knowledge, that a large-scale of CPS gene clusters of different K-serogroups in V. parahaemolyticus have been identified and characterized in evolutionary contexts. This work should help advance understanding on the variation of CPS in V. parahaemolyticus, and provide a framework for developing diagnostically relevant serotyping methods.Author summaryDue to warming ocean waters and human encroachment of coastal ecosystems, Vibrio parahaemolyticus has emerged as a globally important food-borne enteropathogen. However, the genetic structure of CPS loci for 71 K-serogroups V. parahaemolyticus have remained unidentified, limiting progress in understanding its roles in V. parahaemolyticus pathophysiology. In this study, we identified and characterized the genetic structure of CPS loci of 40 K-serogroups through whole genome sequencing of 443 V. parahaemolyticus strains. We expanded and identified its new right-border by identifying glpX as a key gene conserved across all serotypes. We proposed an evolution model of the CPS gene clusters of 40 K-serogroups. We also found horizontal gene transfer by recombination from other Vibrio species, gene duplication and nonsense mutations are likely to play instrumental roles in the evolution of CPS in V. parahaemolyticus. It is the first time, to the best of our knowledge, that a large-scale of CPS loci of different K-serogroups in V. parahaemolyticus have been identified and characterized in evolutionary contexts. This work should help advance understanding on the variation of CPS in V. parahaemolyticus, and provide a framework for developing diagnostically relevant serotyping methods.


Sign in / Sign up

Export Citation Format

Share Document