scholarly journals Contrast-enhanced magnetic resonance angiography in carotid artery disease: does automated image registration improve image quality?

2009 ◽  
Vol 19 (5) ◽  
pp. 1232-1238 ◽  
Author(s):  
Jan Menke ◽  
Jörg Larsen
2018 ◽  
Vol 42 (3) ◽  
pp. 109-115 ◽  
Author(s):  
Paige L. Rowland ◽  
Michelle Colpitts ◽  
Angela Malone ◽  
Munis Raza ◽  
Lenora L. Eberhart ◽  
...  

Ultrasound stratification for the degree of carotid artery disease based solely on lumen reduction has poorly predicted patient outcomes. This pilot study focused on patients with moderate carotid artery stenosis. Our purpose was to use contrast imaging with ultrasound to improve carotid field. A total of 10 patients diagnosed with moderate carotid artery stenosis were rescanned with an administration of a contrast imaging agent. Two-dimensional (2D) imaging, color, and Doppler were utilized to scan the patients. The 20 carotid arteries were blindly read by 2 experienced physicians. Visualization of far field, quality of Doppler envelope, plaque morphology, and overall image quality were semi-quantifiably assessed. With the use of a contrast imaging agent, there was a reduction in interphysician interpretation variability. The Kappa coefficient yielded an increase in agreement for postcontrast imaging in the majority of variables. The Doppler envelope showed improvement from precontrast (0.06) to postcontrast (0.63). The visualization of the far fields demonstrated a significant increase in agreement (0.77, 0.71, and 0.67) postcontrast. Plaque morphology demonstrated enhancement in characterization with contrast (–0.09 to 0.66). In this study, contrast-enhanced ultrasound (CEUS) was found to increase overall image quality. Improved interpretation can enhance risk stratification and with further exploration could be used to guide treatment plans for patients with asymptomatic moderate carotid artery disease.


Stroke ◽  
2008 ◽  
Vol 39 (8) ◽  
pp. 2237-2248 ◽  
Author(s):  
Sarah M. Debrey ◽  
Hua Yu ◽  
John K. Lynch ◽  
Karl-Olof Lövblad ◽  
Violet L. Wright ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Martina Correa Londono ◽  
Nino Trussardi ◽  
Verena C. Obmann ◽  
Davide Piccini ◽  
Michael Ith ◽  
...  

Abstract Background The native balanced steady state with free precession (bSSFP) magnetic resonance angiography (MRA) technique has been shown to provide high diagnostic image quality for thoracic aortic disease. This study compares a 3D radial respiratory self-navigated native MRA (native-SN-MRA) based on a bSSFP sequence with conventional Cartesian, 3D, contrast-enhanced MRA (CE-MRA) with navigator-gated respiration control for image quality of the entire thoracic aorta. Methods Thirty-one aortic native-SN-MRA were compared retrospectively (63.9 ± 10.3 years) to 61 CE-MRA (63.1 ± 11.7 years) serving as a reference standard. Image quality was evaluated at the aortic root/ascending aorta, aortic arch and descending aorta. Scan time was recorded. In 10 patients with both MRA sequences, aortic pathologies were evaluated and normal and pathologic aortic diameters were measured. The influence of artifacts on image quality was analyzed. Results Compared to the overall image quality of CE-MRA, the overall image quality of native-SN-MRA was superior for all segments analyzed (aortic root/ascending, p < 0.001; arch, p < 0.001, and descending, p = 0.005). Regarding artifacts, the image quality of native-SN-MRA remained superior at the aortic root/ascending aorta and aortic arch before and after correction for confounders of surgical material (i.e., susceptibility-related artifacts) (p = 0.008 both) suggesting a benefit in terms of motion artifacts. Native-SN-MRA showed a trend towards superior intraindividual image quality, but without statistical significance. Intraindividually, the sensitivity and specificity for the detection of aortic disease were 100% for native-SN-MRA. Aortic diameters did not show a significant difference (p = 0.899). The scan time of the native-SN-MRA was significantly reduced, with a mean of 05:56 ± 01:32 min vs. 08:51 ± 02:57 min in the CE-MRA (p < 0.001). Conclusions Superior image quality of the entire thoracic aorta, also regarding artifacts, can be achieved with native-SN-MRA, especially in motion prone segments, in addition to a shorter acquisition time.


Sign in / Sign up

Export Citation Format

Share Document