scholarly journals Fractal analysis of the ischemic transition region in chronic ischemic heart disease using magnetic resonance imaging

2016 ◽  
Vol 27 (4) ◽  
pp. 1537-1546 ◽  
Author(s):  
Florian Michallek ◽  
Marc Dewey
2018 ◽  
Vol 19 (1) ◽  
pp. 1-10
Author(s):  
Moram A. Fagiry ◽  
Ikhlas A. Hassan ◽  
Ahmed Abukonna ◽  
Mohamed Yousef ◽  
Batil Alonazi ◽  
...  

2018 ◽  
Vol 60 (6) ◽  
pp. 493-495
Author(s):  
A. Esteban Fernández ◽  
I. Coma-Canella ◽  
G. Bastarrika ◽  
J. Barba-Cosials ◽  
P.M. Azcárate-Agüero

2003 ◽  
Vol 38 (4) ◽  
pp. 320-329 ◽  
Author(s):  
Sandra Pujadas ◽  
Gautham P Reddy ◽  
Jennifer J Lee ◽  
Charles B Higgins

2019 ◽  
Vol 11 (494) ◽  
pp. eaat4407 ◽  
Author(s):  
Hsin-Jung Yang ◽  
Ilkay Oksuz ◽  
Damini Dey ◽  
Jane Sykes ◽  
Michael Klein ◽  
...  

Myocardial oxygenation—the ability of blood vessels to supply the heart muscle (myocardium) with oxygen—is a critical determinant of cardiac function. Impairment of myocardial oxygenation is a defining feature of ischemic heart disease (IHD), which is caused by pathological conditions that affect the blood vessels supplying oxygen to the heart muscle. Detecting altered myocardial oxygenation can help guide interventions and prevent acute life-threatening events such as heart attacks (myocardial infarction); however, current diagnosis of IHD relies on surrogate metrics and exogenous contrast agents for which many patients are contraindicated. An oxygenation-sensitive cardiac magnetic resonance imaging (CMR) approach used previously to demonstrate that CMR signals can be sensitized to changes in myocardial oxygenation showed limited ability to detect small changes in signals in the heart because of physiologic and imaging noise during data acquisition. Here, we demonstrate a CMR-based approach termed cfMRI [cardiac functional magnetic resonance imaging (MRI)] that detects myocardial oxygenation. cfMRI uses carbon dioxide for repeat interrogation of the functional capacity of the heart’s blood vessels via a fast MRI approach suitable for clinical adoption without limitations of key confounders (cardiac/respiratory motion and heart rate changes). This method integrates multiple whole-heart images within a computational framework to reduce noise, producing confidence maps of alterations in myocardial oxygenation. cfMRI permits noninvasive monitoring of myocardial oxygenation without requiring ionizing radiation, contrast agents, or needles. This has the potential to broaden our ability to noninvasively identify IHD and a diverse spectrum of heart diseases related to myocardial ischemia.


Sign in / Sign up

Export Citation Format

Share Document