Estimating the role of three mesopredatory fishes in coral reef food webs at Ningaloo Reef, Western Australia

Coral Reefs ◽  
2015 ◽  
Vol 35 (1) ◽  
pp. 261-269 ◽  
Author(s):  
Emma C. Thillainath ◽  
Jennifer L. McIlwain ◽  
Shaun K. Wilson ◽  
Martial Depczynski
PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0145822 ◽  
Author(s):  
Jiangtao Xu ◽  
Ryan J. Lowe ◽  
Gregory N. Ivey ◽  
Nicole L. Jones ◽  
Zhenlin Zhang

2012 ◽  
Vol 32 ◽  
pp. 22-35 ◽  
Author(s):  
Cecile S.G. Rousseaux ◽  
Ryan Lowe ◽  
Ming Feng ◽  
Anya M. Waite ◽  
Peter A. Thompson

Coral Reefs ◽  
2018 ◽  
Vol 37 (4) ◽  
pp. 985-993 ◽  
Author(s):  
C. Bessey ◽  
R. C. Babcock ◽  
D. P. Thomson ◽  
M. D. E. Haywood

1999 ◽  
Vol 123 (3) ◽  
pp. 437-443 ◽  
Author(s):  
T. J. J. INGLIS ◽  
S. C. GARROW ◽  
C. ADAMS ◽  
M. HENDERSON ◽  
M. MAYO ◽  
...  

A cluster of acute melioidosis cases occurred in a remote, coastal community in tropical Western Australia. Molecular typing of Burkholderia pseudomallei isolates from culture-confirmed cases and suspected environmental sources by pulsed-field gel electrophoresis (PFGE) of XbaI chromosomal DNA digests showed that a single PFGE type was responsible for five cases of acute infection in a community of around 300 during a 5 week period. This temporal and geographical clustering of acute melioidosis cases provided a unique opportunity to investigate the environmental factors contributing to this disease. B. pseudomallei isolated from a domestic tap at the home of an asymptomatic seroconverter was indistinguishable by PFGE. Possible contributing environmental factors included an unusually acid communal water supply, unrecordable chlorine levels during the probable exposure period, a nearby earth tremor, and gusting winds during the installation of new water and electricity supplies. The possible role of the potable water supply as a source of B. pseudomallei was investigated further.


2014 ◽  
Vol 148 ◽  
pp. 109-119 ◽  
Author(s):  
Douglas J. Anderson ◽  
Halina T. Kobryn ◽  
Brad M. Norman ◽  
Lars Bejder ◽  
Julian A. Tyne ◽  
...  

2021 ◽  
Author(s):  
Matthew A. Vaughan ◽  
Danielle L. Dixson

AbstractCoral reef organisms are exposed to both an increasing magnitude of pCO2, and natural fluctuations on a diel scale. For coral reef fishes, one of the most profound effects of ocean acidification is the impact on ecologically important behaviors. Previous behavioral research has primarily been conducted under static pCO2 conditions and have recently come under criticism. Recent studies have provided evidence that the negative impacts on behavior may be reduced under more environmentally realistic, fluctuating conditions. We investigated the impact of both present and future day, static (500 and 1000 μatm) and diel fluctuating (500 ± 200 and 1000 ± 200 μatm) pCO2 on the lateralization and chemosensory behavior of juvenile anemonefish, Amphiprion percula. Our static experimental comparisons support previous findings that under elevated pCO2, fish become un-lateralized and lose the ability to discriminate olfactory cues. Diel-fluctuating pCO2 may aid in mitigating the severity of some behavioral abnormalities such as the chemosensory response, where a preference for predator cues was significantly reduced under a future diel-fluctuating pCO2 regime. This research aids in ground truthing earlier findings and contributes to our growing knowledge of the role of fluctuating conditions.


2007 ◽  
Vol 340 ◽  
pp. 55-62 ◽  
Author(s):  
K Kon ◽  
H Kurokura ◽  
K Hayashizaki

Sign in / Sign up

Export Citation Format

Share Document