Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect

2014 ◽  
Vol 117 (4) ◽  
pp. 1821-1833 ◽  
Author(s):  
M. Izadi ◽  
M. M. Shahmardan ◽  
M. Norouzi ◽  
A. M. Rashidi ◽  
A. Behzadmehr
2011 ◽  
Vol 1 (9) ◽  
pp. 65-67
Author(s):  
Pritesh S Patel ◽  
◽  
Prof. Dattatraya G Subhedar ◽  
Prof. Kamlesh V Chauhan

Author(s):  
Jinyuan Wang ◽  
Yi-Peng Xu ◽  
Raed Qahiti ◽  
M. Jafaryar ◽  
Mashhour A. Alazwari ◽  
...  

2022 ◽  
Vol 48 ◽  
pp. 103882
Author(s):  
Adeel Arshad ◽  
Mark Jabbal ◽  
Hamza Faraji ◽  
Pouyan Talebizadehsardari ◽  
Muhammad Anser Bashir ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Yacine Khetib ◽  
Hala M. Abo-Dief ◽  
Abdullah K. Alanazi ◽  
Goshtasp Cheraghian ◽  
S. Mohammad Sajadi ◽  
...  

In this numerical work, the cooling performance of water–Al2O3 nanofluid (NF) in a novel microchannel heat sink with wavy walls (WMH-S) is investigated. The focus of this article is on the effect of NP diameter on the cooling efficiency of the heat sink. The heat sink has four inlets and four outlets, and it receives a constant heat flux from the bottom. CATIA and CAMSOL software were used to design the model and simulate the NF flow and heat transfer, respectively. The effects of the Reynolds number (Re) and volume percentage of nanoparticles (Fi) on the outcomes are investigated. One of the most significant results of this work was the reduction in the maximum and average temperatures of the H-S by increasing both the Re and Fi. In addition, the lowest Tmax and pumping power belong to the state of low NP diameter and higher Fi. The addition of nanoparticles reduces the heat sink maximum temperature by 3.8 and 2.5% at the Reynolds numbers of 300 and 1800, respectively. Furthermore, the highest figure of merit (FOM) was approximately 1.25, which occurred at Re=1800 and Fi = 5%. Eventually, it was revealed that the best performance of the WMH-S was observed in the case of Re=807.87, volume percentage of 0.0437%, and NP diameter of 20 nm.


2016 ◽  
Vol 108 ◽  
pp. 297-308 ◽  
Author(s):  
Morteza Khoshvaght-Aliabadi ◽  
Mohammad Sahamiyan
Keyword(s):  

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 854 ◽  
Author(s):  
Talha Anwar ◽  
Poom Kumam ◽  
Zahir Shah ◽  
Wiboonsak Watthayu ◽  
Phatiphat Thounthong

In this research article, we investigated a comprehensive analysis of time-dependent free convection electrically and thermally conducted water-based nanofluid flow containing Copper and Titanium oxide (Cu and TiO 2 ) past a moving porous vertical plate. A uniform transverse magnetic field is imposed perpendicular to the flow direction. Thermal radiation and heat sink terms are included in the energy equation. The governing equations of this flow consist of partial differential equations along with some initial and boundary conditions. The solution method of these flow interpreting equations comprised of two parts. Firstly, principal equations of flow are symmetrically transformed to a set of nonlinear coupled dimensionless partial differential equations using convenient dimensionless parameters. Secondly, the Laplace transformation technique is applied to those non-dimensional equations to get the close form exact solutions. The control of momentum and heat profile with respect to different associated parameters is analyzed thoroughly with the help of graphs. Fluid accelerates with increasing Grashof number (Gr) and porosity parameter (K), while increasing values of heat sink parameter (Q) and Prandtl number (Pr) drop the thermal profile. Moreover, velocity and thermal profile comparison for Cu and TiO 2 -based nanofluids is graphed.


Sign in / Sign up

Export Citation Format

Share Document