scholarly journals Waveguide-induced dispersion interaction between two two-level atoms with orthogonal in-transverse-plane dipoles

2019 ◽  
Vol 125 (11) ◽  
Author(s):  
Fam Le Kien ◽  
Lewis Ruks ◽  
Thomas Busch

Abstract We study the dispersion interaction between two ground-state two-level atoms near a cylindrical vacuum-clad optical waveguide. We focus on the case where the electric-dipole matrix-element vectors of the atoms are perpendicular to each other and to the interatomic axis. When these atoms are in free space, the dispersion interaction between them vanishes. In the presence of a waveguide aligned parallel to the interatomic axis, the energy of the dispersion interaction between the atoms may become nonzero and comparable to the average energy of the dispersion interaction between two atoms with arbitrarily oriented dipoles in free space. This waveguide-induced dispersion interaction is a consequence of the anisotropy of the medium around the atoms.

1986 ◽  
Vol 33 (2) ◽  
pp. 1000-1007 ◽  
Author(s):  
Chang-Hwan Park ◽  
Anthony F. Starace ◽  
Jiang Tan ◽  
Chii-Dong Lin

Geophysics ◽  
1984 ◽  
Vol 49 (11) ◽  
pp. 2061-2063 ◽  
Author(s):  
James R. Wait

In a previous communication I proposed an analytical model to simulate the electromagnetic (EM) and induced polarization (IP) response of a metal well casing (Wait, 1983). To facilitate the analysis, the earth was idealized as a homogeneous conducting half‐space of electrical properties (σ, ε, μ). The well casing was represented as a filamental vertical conductor of semiinfinite length that was characterized by a series axial impedance to account for eddy currents and interfacial polarization. A further basic simplification was to neglect displacement currents in the air; this was justified when all significant distances were small compared with the free‐space wavelength. Initially, the source was taken to be a horizontal electric dipole or current element I ds on the air‐earth interface. By integration of the results, the mutual impedance between two grounded circuits could be ascertained. In the absence of the vertical conductor (i.e., the well casing) the results reduced to those given by Sunde (1968) and Ward (1967).


1974 ◽  
Vol 29 (10) ◽  
pp. 1498-1500 ◽  
Author(s):  
W. Czieslik ◽  
L. Carpentier ◽  
D. H. Sutter

Abstract The microwave spectrum of Methylenecyclobutenone has been investigated in the vibrational ground state in the range of 8 to 26.5 GHz. From a least square fit of 12 lines with J ≦ 4 the rotational constants have been calculated as A =5.775664±0.000009 GHz, B = 4.312314 ± 0.000007 GHz, C = 2.467814±0.000008 GHz. The inertia defect Δ = - 0.09 amuÅ2 indicates that the molecule is planar. From Stark-effect measurements the components of the molecular electric dipole moment were obtaied as |μa| = 2.04 ± 0.02 D, |μb| = 2.70±0.03 D, |μtotal| = 3.39 ± 0.05 D.


2015 ◽  
Vol 19 (01-03) ◽  
pp. 527-534
Author(s):  
Kamlesh Awasthi ◽  
Hung-Yu Hsu ◽  
Hung-Chu Chiang ◽  
Chi-Lun Mai ◽  
Chen-Yu Yeh ◽  
...  

Polarized electroabsorption (E-A) spectra of highly efficient porphyrin sensitizers (YD2 and YD2-oC8) have been measured in benzene solution. Polarized E-A spectra of these push–pull porphyrins embedded in poly(methyl methacrylate) films or sensitized on TiO 2 films are also observed. Based on the analysis of the E-A spectra, the magnitude of the electric dipole moment both in the ground state and in the lowest excited state have been evaluated in solution and in solid films. The electric dipole moment in the excited state of these compounds is very large on TiO 2 films, suggesting the interfacial charge transfer on TiO 2 surface following photoexcitation of porphyrin dyes. The electric dipole moment in the excited state evaluated from the E-A spectra is very different from the one evaluated from the electrophotoluminescence spectra on TiO 2, suggesting that the strong local field of TiO 2 films is applied to the fluorescing dyes attached to TiO 2 films.


RSC Advances ◽  
2014 ◽  
Vol 4 (61) ◽  
pp. 32117-32126 ◽  
Author(s):  
Cheng-Peng Chang

An analytical approach is developed to access the exact energy spectrum, wave functions, dipole matrix element (Mfi) and absorption spectra (A(ω)) of gated Bernal bilayer graphene.


Sign in / Sign up

Export Citation Format

Share Document