Dung beetles ignore landmarks for straight-line orientation

2012 ◽  
Vol 199 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Marie Dacke ◽  
Marcus Byrne ◽  
Jochen Smolka ◽  
Eric Warrant ◽  
Emily Baird
2019 ◽  
Vol 222 (Suppl 1) ◽  
pp. jeb192450 ◽  
Author(s):  
Basil el Jundi ◽  
Emily Baird ◽  
Marcus J. Byrne ◽  
Marie Dacke

2019 ◽  
Vol 16 (157) ◽  
pp. 20190181 ◽  
Author(s):  
Lana Khaldy ◽  
Orit Peleg ◽  
Claudia Tocco ◽  
L. Mahadevan ◽  
Marcus Byrne ◽  
...  

Moving along a straight path is a surprisingly difficult task. This is because, with each ensuing step, noise is generated in the motor and sensory systems, causing the animal to deviate from its intended route. When relying solely on internal sensory information to correct for this noise, the directional error generated with each stride accumulates, ultimately leading to a curved path. In contrast, external compass cues effectively allow the animal to correct for errors in its bearing. Here, we studied straight-line orientation in two different sized dung beetles. This allowed us to characterize and model the size of the directional error generated with each step, in the absence of external visual compass cues ( motor error ) as well as in the presence of these cues ( compass and motor errors ). In addition, we model how dung beetles balance the influence of internal and external orientation cues as they orient along straight paths under the open sky. We conclude that the directional error that unavoidably accumulates as the beetle travels is inversely proportional to the step size of the insect, and that both beetle species weigh the two sources of directional information in a similar fashion.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 526
Author(s):  
Lana Khaldy ◽  
Claudia Tocco ◽  
Marcus Byrne ◽  
Marie Dacke

To guide their characteristic straight-line orientation away from the dung pile, ball-rolling dung beetles steer according to directional information provided by celestial cues, which, among the most relevant are the sun and polarised skylight. Most studies regarding the use of celestial cues and their influence on the orientation system of the diurnal ball-rolling beetle have been performed on beetles of the tribe Scarabaeini living in open habitats. These beetles steer primarily according to the directional information provided by the sun. In contrast, Sisyphus fasciculatus, a species from a different dung-beetle tribe (the Sisyphini) that lives in habitats with closely spaced trees and tall grass, relies predominantly on directional information from the celestial pattern of polarised light. To investigate the influence of visual ecology on the relative weight of these cues, we studied the orientation strategy of three different tribes of dung beetles (Scarabaeini, Sisyphini and Gymnopleurini) living within the same biome, but in different habitat types. We found that species within a tribe share the same orientation strategy, but that this strategy differs across the tribes; Scarabaeini, living in open habitats, attribute the greatest relative weight to the directional information from the sun; Sisyphini, living in closed habitats, mainly relies on directional information from polarised skylight; and Gymnopleurini, also living in open habitats, appear to weight both cues equally. We conclude that, despite exhibiting different body size, eye size and morphology, dung beetles nevertheless manage to solve the challenge of straight-line orientation by weighting visual cues that are particular to the habitat in which they are found. This system is however dynamic, allowing them to operate equally well even in the absence of the cue given the greatest relative weight by the particular species.


2014 ◽  
Vol 369 (1636) ◽  
pp. 20130036 ◽  
Author(s):  
M. Dacke ◽  
Basil el Jundi ◽  
Jochen Smolka ◽  
Marcus Byrne ◽  
Emily Baird

Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day.


2019 ◽  
Vol 206 (3) ◽  
pp. 327-335 ◽  
Author(s):  
Lana Khaldy ◽  
Claudia Tocco ◽  
Marcus Byrne ◽  
Emily Baird ◽  
Marie Dacke

Author(s):  
D.R. Ensor ◽  
C.G. Jensen ◽  
J.A. Fillery ◽  
R.J.K. Baker

Because periodicity is a major indicator of structural organisation numerous methods have been devised to demonstrate periodicity masked by background “noise” in the electron microscope image (e.g. photographic image reinforcement, Markham et al, 1964; optical diffraction techniques, Horne, 1977; McIntosh,1974). Computer correlation analysis of a densitometer tracing provides another means of minimising "noise". The correlation process uncovers periodic information by cancelling random elements. The technique is easily executed, the results are readily interpreted and the computer removes tedium, lends accuracy and assists in impartiality.A scanning densitometer was adapted to allow computer control of the scan and to give direct computer storage of the data. A photographic transparency of the image to be scanned is mounted on a stage coupled directly to an accurate screw thread driven by a stepping motor. The stage is moved so that the fixed beam of the densitometer (which is directed normal to the transparency) traces a straight line along the structure of interest in the image.


Author(s):  
Joseph A. Zasadzinski

At low weight fractions, many surfactant and biological amphiphiles form dispersions of lamellar liquid crystalline liposomes in water. Amphiphile molecules tend to align themselves in parallel bilayers which are free to bend. Bilayers must form closed surfaces to separate hydrophobic and hydrophilic domains completely. Continuum theory of liquid crystals requires that the constant spacing of bilayer surfaces be maintained except at singularities of no more than line extent. Maxwell demonstrated that only two types of closed surfaces can satisfy this constraint: concentric spheres and Dupin cyclides. Dupin cyclides (Figure 1) are parallel closed surfaces which have a conjugate ellipse (r1) and hyperbola (r2) as singularities in the bilayer spacing. Any straight line drawn from a point on the ellipse to a point on the hyperbola is normal to every surface it intersects (broken lines in Figure 1). A simple example, and limiting case, is a family of concentric tori (Figure 1b).To distinguish between the allowable arrangements, freeze fracture TEM micrographs of representative biological (L-α phosphotidylcholine: L-α PC) and surfactant (sodium heptylnonyl benzenesulfonate: SHBS)liposomes are compared to mathematically derived sections of Dupin cyclides and concentric spheres.


Author(s):  
Norman L. Dockum ◽  
John G. Dockum

Ultrastructural characteristics of fractured human enamel and acid-etched enamel were compared using acetate replicas shadowed with platinum and palladium. Shadowed replications of acid-etched surfaces were also obtained by the same method.Enamel from human teeth has a rod structure within which there are crystals of hydroxyapatite contained within a structureless organic matrix composed of keratin. The rods which run at right angles from the dentino-enamel junction are considered to run in a straight line perpendicular to the perimeter of the enamel, however, in many areas these enamel rods overlap, interlacing and intertwining with one another.


Ecography ◽  
2001 ◽  
Vol 24 (5) ◽  
pp. 511-524 ◽  
Author(s):  
Tomas Roslin

Sign in / Sign up

Export Citation Format

Share Document