motor error
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 14)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 15 (5) ◽  
pp. 372-390
Author(s):  
Joan N. Vickers

This paper reveals new insights that comes from comparing quiet eye (QE) studies within the motor accuracy and motor error paradigms. Motor accuracy is defined by the rules of the sport (e.g,. hits versus misses), while motor error is defined by a behavioral measure, such as how far a ball or other object lands from the target (e.g. radial error). The QE motor accuracy paradigm treats accuracy as an independent variable and determines the QE duration during an equal (or near-equal) number of hits and misses per condition per participant, while the motor error QE paradigm combines hits and misses into one data set and determines the correlation between the QE and motor error, which is used as a proxy for accuracy. QE studies within the motor accuracy paradigm consistently find a longer QE duration is a characteristic of skill, and/or interaction of skill by accuracy. In contrast, QE motor error studies do not analyze or report the relationship between the QE duration and accuracy (although often claimed), and rarely find a significant correlation between the QE duration and error. Evidence is provided showing the absence of significant results in QE motor error studies is due to the low number of accurate trials found in motor error studies due to the inherent complexity of all sport skills. Novices in targeting skills make fewer than 20% of their shots and experts less than 40% (with some exceptions) creating imbalanced data sets that make it difficult, if not impossible, to find significant QE results (or any other neural, perceptual or cognitive variable) related to motor accuracy in sport.


PLoS Biology ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. e3001400
Author(s):  
Akshay Markanday ◽  
Junya Inoue ◽  
Peter W. Dicke ◽  
Peter Thier

Purkinje cell (PC) discharge, the only output of cerebellar cortex, involves 2 types of action potentials, high-frequency simple spikes (SSs) and low-frequency complex spikes (CSs). While there is consensus that SSs convey information needed to optimize movement kinematics, the function of CSs, determined by the PC’s climbing fiber input, remains controversial. While initially thought to be specialized in reporting information on motor error for the subsequent amendment of behavior, CSs seem to contribute to other aspects of motor behavior as well. When faced with the bewildering diversity of findings and views unraveled by highly specific tasks, one may wonder if there is just one true function with all the other attributions wrong? Or is the diversity of findings a reflection of distinct pools of PCs, each processing specific streams of information conveyed by climbing fibers? With these questions in mind, we recorded CSs from the monkey oculomotor vermis deploying a repetitive saccade task that entailed sizable motor errors as well as small amplitude saccades, correcting them. We demonstrate that, in addition to carrying error-related information, CSs carry information on the metrics of both primary and small corrective saccades in a time-specific manner, with changes in CS firing probability coupled with changes in CS duration. Furthermore, we also found CS activity that seemed to predict the upcoming events. Hence PCs receive a multiplexed climbing fiber input that merges complementary streams of information on the behavior, separable by the recipient PC because they are staggered in time.


2021 ◽  
Author(s):  
Jan Wessel ◽  
Jiefeng jiang

The ability to detect and correct action errors is paramount to safe and efficient behavior. Its underlying processes are subject of intense scientific debate. The recent adaptive orienting theory of error processing (AOT) proposes that errors trigger a cascade of processes that purportedly begins with a broad suppression of active motoric and – crucially – cognitive processes. While the motoric effects of errors are well established, an empirical test of their purported suppressive effects on active cognitive processes is still missing. Here, we provide data from six experiments clearly demonstrating such effects. Participants maintained information in verbal working memory (WM) and performed different response conflict tasks during the delay period. Motor error commission during the delay period consistently reduced accuracy on the WM probe, demonstrating an error-related impairment of WM maintenance. We discuss the broad theoretical and practical implications of this finding, both for the AOT and beyond.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel H. Blustein ◽  
Ahmed W. Shehata ◽  
Erin S. Kuylenstierna ◽  
Kevin B. Englehart ◽  
Jonathon W. Sensinger

AbstractWhen a person makes a movement, a motor error is typically observed that then drives motor planning corrections on subsequent movements. This error correction, quantified as a trial-by-trial adaptation rate, provides insight into how the nervous system is operating, particularly regarding how much confidence a person places in different sources of information such as sensory feedback or motor command reproducibility. Traditional analysis has required carefully controlled laboratory conditions such as the application of perturbations or error clamping, limiting the usefulness of motor analysis in clinical and everyday environments. Here we focus on error adaptation during unperturbed and naturalistic movements. With increasing motor noise, we show that the conventional estimation of trial-by-trial adaptation increases, a counterintuitive finding that is the consequence of systematic bias in the estimate due to noise masking the learner’s intention. We present an analytic solution relying on stochastic signal processing to reduce this effect of noise, producing an estimate of motor adaptation with reduced bias. The result is an improved estimate of trial-by-trial adaptation in a human learner compared to conventional methods. We demonstrate the effectiveness of the new method in analyzing simulated and empirical movement data under different noise conditions.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jana Masselink ◽  
Markus Lappe

Sensorimotor learning adapts motor output to maintain movement accuracy. For saccadic eye movements, learning also alters space perception, suggesting a dissociation between the performed saccade and its internal representation derived from corollary discharge (CD). This is critical since learning is commonly believed to be driven by CD-based visual prediction error. We estimate the internal saccade representation through pre- and trans-saccadic target localization, showing that it decouples from the actual saccade during learning. We present a model that explains motor and perceptual changes by collective plasticity of spatial target percept, motor command, and a forward dynamics model that transforms CD from motor into visuospatial coordinates. We show that learning does not follow visual prediction error but instead a postdictive update of space after saccade landing. We conclude that trans-saccadic space perception guides motor learning via CD-based postdiction of motor error under the assumption of a stable world.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yizhao Wang ◽  
Huiying Zhu ◽  
Naveen Elangovan ◽  
Leonardo Cappello ◽  
Giulio Sandini ◽  
...  

AbstractProprioceptive training is a neurorehabilitation approach known to improve proprioceptive acuity and motor performance of a joint/limb system. Here, we examined if such learning transfers to the contralateral joints. Using a robotic exoskeleton, 15 healthy, right-handed adults (18–35 years) trained a visuomotor task that required making increasingly small wrist movements challenging proprioceptive function. Wrist position sense just-noticeable-difference thresholds (JND) and spatial movement accuracy error (MAE) in a wrist-pointing task that was not trained were assessed before and immediately as well as 24 h after training. The main results are: first, training reduced JND thresholds (− 27%) and MAE (− 33%) in the trained right wrist. Sensory and motor gains were observable 24 h after training. Second, in the untrained left wrist, mean JND significantly decreased (− 32%) at posttest. However, at retention the effect was no longer significant. Third, motor error at the untrained wrist declined slowly. Gains were not significant at posttest, but MAE was significantly reduced (− 27%) at retention. This study provides first evidence that proprioceptive-focused visuomotor training can induce proprioceptive and motor gains not only in the trained joint but also in the contralateral, homologous joint. We discuss the possible neurophysiological mechanism behind such sensorimotor transfer and its implications for neurorehabilitation.


2019 ◽  
Vol 9 (12) ◽  
pp. 356
Author(s):  
Tsubasa Kawasaki ◽  
Masashi Kono ◽  
Ryosuke Tozawa

The present study examined whether (a) verbally describing one’s own body movement can be potentially effective for acquiring motor skills, and (b) if the effects are related to motor imagery. The participants in this study were 36 healthy young adults (21.2 ± 0.7 years), randomly assigned into two groups (describing and control). They performed a ball rotation activity, with the describing group being asked by the examiner to verbally describe their own ball rotation, while the control group was asked to read a magazine aloud. The participants’ ball rotation performances were measured before the intervention, then again immediately after, five minutes after, and one day after. In addition, participants’ motor imagery ability (mental chronometry) of their upper extremities was measured. The results showed that the number of successful ball rotations (motor smoothness) and the number of ball drops (motor error) significantly improved in the describing group. Moreover, improvement in motor skills had a significant correlation with motor imagery ability. This suggests that verbally describing an intervention is an effective tool for learning motor skills, and that motor imagery is a potential mechanism for such verbal descriptions.


2019 ◽  
Vol 122 (5) ◽  
pp. 1909-1917
Author(s):  
Svenja Gremmler ◽  
Markus Lappe

We investigated whether the proprioceptive eye position signal after the execution of a saccadic eye movement is used to estimate the accuracy of the movement. If so, saccadic adaptation, the mechanism that maintains saccade accuracy, could use this signal in a similar way as it uses visual feedback after the saccade. To manipulate the availability of the proprioceptive eye position signal we utilized the finding that proprioceptive eye position information builds up gradually after a saccade over a time interval comparable to typical saccade latencies. We confined the retention time of gaze at the saccade landing point by asking participants to make fast return saccades to the fixation point that preempt the usability of proprioceptive eye position signals. In five experimental conditions we measured the influence of the visual and proprioceptive feedback, together and separately, on the development of adaptation. We found that the adaptation of the previously shortened saccades in the case of visual feedback being unavailable after the saccade was significantly weaker when the use of proprioceptive eye position information was impaired by fast return saccades. We conclude that adaptation can be driven by proprioceptive eye position feedback. NEW & NOTEWORTHY We show that proprioceptive eye position information is used after a saccade to estimate motor error and adapt saccade control. Previous studies on saccadic adaptation focused on visual feedback about saccade accuracy. A multimodal error signal combining visual and proprioceptive information is likely more robust. Moreover, combining proprioceptive and visual measures of saccade performance can be helpful to keep vision, proprioception, and motor control in alignment and produce a coherent representation of space.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Keiji Ota ◽  
Masahiro Shinya ◽  
Laurence T. Maloney ◽  
Kazutoshi Kudo

Abstract To make optimal decisions under risk, one must correctly weight potential rewards and penalties by the probabilities of receiving them. In motor decision tasks, the uncertainty in outcome is a consequence of motor uncertainty. When participants perform suboptimally as they often do in such tasks, it could be because they have insufficient information about their motor uncertainty: with more information, their performance could converge to optimal as they learn their own motor uncertainty. Alternatively, their suboptimal performance may reflect an inability to make use of the information they have or even to perform the correct computations. To discriminate between these two possibilities, we performed an experiment spanning two days. On the first day, all participants performed a reaching task with trial-by-trial feedback of motor error. At the end of the day, their aim points were still typically suboptimal. On the second day participants were divided into two groups one of which repeated the task of the first day and the other of which repeated the task but were intermittently given additional information summarizing their motor errors. Participants receiving additional information did not perform significantly better than those who did not.


Sign in / Sign up

Export Citation Format

Share Document