The numerical solution of fractional differential equations using the Volterra integral equation method based on thin plate splines

2018 ◽  
Vol 35 (4) ◽  
pp. 1391-1408 ◽  
Author(s):  
Pouria Assari ◽  
Salvatore Cuomo
Open Physics ◽  
2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Shahrokh Esmaeili ◽  
Mostafa Shamsi ◽  
Mehdi Dehghan

AbstractThe main focus of this paper is to present a numerical method for the solution of fractional differential equations. In this method, the properties of the Caputo derivative are used to reduce the given fractional differential equation into a Volterra integral equation. The entire domain is divided into several small domains, and by collocating the integral equation at two adjacent points a system of two algebraic equations in two unknowns is obtained. The method is applied to solve linear and nonlinear fractional differential equations. Also the error analysis is presented. Some examples are given and the numerical simulations are also provided to illustrate the effectiveness of the new method.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xianzhen Zhang ◽  
Zuohua Liu ◽  
Hui Peng ◽  
Xianmin Zhang ◽  
Shiyong Yang

Based on some recent works about the general solution of fractional differential equations with instantaneous impulses, a Caputo-Hadamard fractional differential equation with noninstantaneous impulses is studied in this paper. An equivalent integral equation with some undetermined constants is obtained for this fractional order system with noninstantaneous impulses, which means that there is general solution for the impulsive systems. Next, an example is given to illustrate the obtained result.


Sign in / Sign up

Export Citation Format

Share Document