Numerical solution of fractional differential equations via a Volterra integral equation approach

Open Physics ◽  
2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Shahrokh Esmaeili ◽  
Mostafa Shamsi ◽  
Mehdi Dehghan

AbstractThe main focus of this paper is to present a numerical method for the solution of fractional differential equations. In this method, the properties of the Caputo derivative are used to reduce the given fractional differential equation into a Volterra integral equation. The entire domain is divided into several small domains, and by collocating the integral equation at two adjacent points a system of two algebraic equations in two unknowns is obtained. The method is applied to solve linear and nonlinear fractional differential equations. Also the error analysis is presented. Some examples are given and the numerical simulations are also provided to illustrate the effectiveness of the new method.

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 226-230 ◽  
Author(s):  
A. Bolandtalat ◽  
E. Babolian ◽  
H. Jafari

AbstractIn this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.


Author(s):  
Djurdjica Takači ◽  
Arpad Takači ◽  
Aleksandar Takači

AbstractFuzzy fractional differential equations with fuzzy coefficients are analyzed in the frame of Mikusiński operators. Systems of fuzzy operational algebraic equations are obtained, in view of the definition of fuzzy derivatives. Their exact and approximate solutions are constructed and their characters are analyzed, considering them as the corresponding solutions of the given problem. The described procedure of the construction of solutions is illustrated on an example and the obtained approximate solutions of the considered problems are visualized by using the GeoGebra software package.


2018 ◽  
Vol 16 (1) ◽  
pp. 1519-1536
Author(s):  
Bashir Ahmad ◽  
Najla Alghamdi ◽  
Ahmed Alsaedi ◽  
Sotiris K. Ntouyas

AbstractWe introduce and study a new kind of nonlocal boundary value problems of multi-term fractional differential equations. The existence and uniqueness results for the given problem are obtained by applying standard fixed point theorems. We also construct some examples for demonstrating the application of the main results.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xianzhen Zhang ◽  
Zuohua Liu ◽  
Hui Peng ◽  
Xianmin Zhang ◽  
Shiyong Yang

Based on some recent works about the general solution of fractional differential equations with instantaneous impulses, a Caputo-Hadamard fractional differential equation with noninstantaneous impulses is studied in this paper. An equivalent integral equation with some undetermined constants is obtained for this fractional order system with noninstantaneous impulses, which means that there is general solution for the impulsive systems. Next, an example is given to illustrate the obtained result.


2018 ◽  
Vol 20 ◽  
pp. 02001
Author(s):  
M. Razzaghi

In this paper, a new numerical method for solving the fractional differential equations with boundary value problems is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The Riemann-Liouville fractional integral operator for hybrid functions is given. This operator is then utilized to reduce the solution of the boundary value problems for fractional differential equations to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Adel Al-Rabtah ◽  
Shaher Momani ◽  
Mohamed A. Ramadan

Suitable spline functions of polynomial form are derived and used to solve linear and nonlinear fractional differential equations. The proposed method is applicable for0<α≤1andα≥1, whereαdenotes the order of the fractional derivative in the Caputo sense. The results obtained are in good agreement with the exact analytical solutions and the numerical results presented elsewhere. Results also show that the technique introduced here is robust and easy to apply.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 715
Author(s):  
Erdal Karapınar ◽  
Andreea Fulga

In this manuscript, we aim to provide a new hybrid type contraction that is a combination of a Jaggi type contraction and interpolative type contraction in the framework of complete metric spaces. We investigate the existence and uniqueness of such a hybrid contraction in separate theorems. We consider a solution to certain fractional differential equations as an application of the given results. In addition, we provide an example to indicate the genuineness of the given results.


Sign in / Sign up

Export Citation Format

Share Document