Effects of 17-year fertilization on soil microbial biomass C and N and soluble organic C and N in loessial soil during maize growth

2010 ◽  
Vol 47 (2) ◽  
pp. 121-128 ◽  
Author(s):  
Bin Liang ◽  
Xueyun Yang ◽  
Xinhua He ◽  
Jianbin Zhou
2014 ◽  
Vol 34 (13) ◽  
Author(s):  
张静 ZHANG Jing ◽  
马玲 MA Ling ◽  
丁新华 DING Xinhua ◽  
陈旭日 CHEN Xuri ◽  
马伟 MA Wei

2019 ◽  
Author(s):  
Monika Rawat ◽  
Kusum Arunachalam ◽  
Ayyandar Arunachalam ◽  
Juha Alatalo ◽  
Ujjwal Kumar ◽  
...  

Plant-soil interactions are a major determinant of changes in forest ecosystem processes and functioning. We conducted a trait-based study to quantify the contribution of plant traits and soil properties to above- and below-ground ecosystem properties in temperate forest in the Indian Himalayas. Nine plant traits (leaf area, specific leaf area, leaf water content, leaf dry matter content, leaf carbon (C), nitrogen (N), phosphorus (P), leaf C/N, and leaf N/P) and eight soil properties (pH, moisture, available N, P, potassium (K), total C, N, P) were selected for determination of their contribution to major ecosystem processes (above-ground biomass C, soil organic C, soil microbial biomass C, N, and P, and soil respiration) in temperate forest. Among the plant traits studied, leaf C, N, P, and leaf N/P ratio proved to be the main contributors to above-ground biomass, explaining 20-27% of variation. Leaf N, P, and leaf N/P were the main contributors to below-ground soil organic C, soil microbial biomass C, N, and P, and soil respiration (explaining 33% of variation). Together, the soil properties pH, available P, total N and C explained 60% of variation in above-ground biomass, while pH and total C explained 56% of variation in soil organic C. Other soil properties (available P, total C and N) also explained much of the variation in soil microbial biomass C (52%) and N (67%), while soil pH explained some of variation in soil microbial biomass N (14%). Available P, total N, and pH explained soil microbial biomass P (81%), while soil respiration was only explained by soil total C (70%). Thusleaf traits and soil characteristics make a significant contribution to explaining variations in above- and below-ground ecosystem processes and functioning in temperate forest in the Indian Himalayas. Consequently, tree species for afforestation, restoration, and commercial forestryshould be carefully selected, as they can influence the climate change mitigation potential of forest in terms of C stocks in biomass and soils.


2017 ◽  
Vol 37 (23) ◽  
Author(s):  
杨文航 YANG Wenhang ◽  
秦红 QING Hong ◽  
任庆水 REN Qingshui ◽  
贺燕燕 HE Yanyan ◽  
李晓雪 LI Xiaoxue ◽  
...  

Soil Research ◽  
2014 ◽  
Vol 52 (3) ◽  
pp. 299 ◽  
Author(s):  
Mahesh Kumar Singh ◽  
Nandita Ghoshal

The impact of land-use change on soil microbial biomass carbon (C) and nitrogen (N) was studied through two annual cycles involving natural forest, degraded forest, agroecosystem and Jatropha curcas plantation. Soil microbial biomass C and N, soil moisture content and soil temperature were analysed at upper (0–10 cm), middle (10–20 cm) and lower (20–30 cm) soil depths during the rainy, winter and summer seasons. The levels of microbial biomass C and N were highest in the natural forest, followed in decreasing order by Jatropha curcas plantation, degraded forest and the agroecosystem. The highest level of soil microbial biomass C and N was observed during summer, decreasing through winter to the minimum during the rainy season. Soil microbial biomass C and N decreased with increasing soil depth for all land-use types, and for all seasons. Seasonal variation in soil microbial biomass was better correlated with the soil moisture content than with soil temperature. The microbial biomass C/N ratio increased with the soil depth for all land-use types, indicating changes in the microbial community with soil depth. It is concluded that the change in land-use pattern, from natural forest to other ecosystems, results in a considerable decrease in soil microbial biomass C and N. Jatropha plantation may be an alternative for the restoration of degraded lands in the dry tropics.


Sign in / Sign up

Export Citation Format

Share Document