n fluxes
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 16)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 79 (4) ◽  
pp. 149-179
Author(s):  
Stuart Waugh ◽  
Robert C. Aller

To better understand the capacity of sediments to serve as both source and sink of nitrogen (N) and to identify any evidence of evolving changes in sedimentary N cycling, N2 production, N remineralization, and N2 fixation were studied over a multi-year period (2010–2015) in bioturbated mud of Great Peconic Bay, a temperate northeastern U. S. estuary. Benthic fluxes and rates of organic matter remineralization were measured using in situ and ex situ incubations. Net annual NH+ 4, NO–3/NO–2, and N2–N fluxes (μ = 1.1, 0.03, and 1.2 mmol m –2d –1) were close to averages for comparable sedi- mentary environments from surveys of published field studies. Net N2 fluxes (by membrane inlet mass spectrometry) were influenced in different periods by temperature, oxygenation of sediment, pulsed Corg, and the activity of benthic macrofauna and benthic microalgae, although no single physical or biogeochemical variable showed a strong, direct relationship with net N2 fluxes over all sampling periods. In situ measurements sometimes showed more dynamic and higher amplitude diurnal N flux cycles than did ex situ incubations, suggesting ex situ incubations did not fully capture impacts of bioirrigation or benthic photosynthesis.15 N tracer experiments indicated anammox was < 7% of total N2 production. Acetylene reduction assays demonstrated C2 H4 production to depths ≥ 15 cm and suggested N2 fixation may have approached 25% of gross N2 production(3:1 C2 H4 : N2). Mass balances incorporating independently measured N remineralization estimates were consistent with measured levels of N2 fixation. Overall, complex balances of competing processes governed sedimentary N cycling seasonally, and N2 production dominated N2 fixation. Measured N2 fixation was consistent with constraints from N remineralization rates and net N fluxes except in episodic conditions (e. g., algal blooms). There was no indication of progressive changes in N cycling magnitudes or relative N reaction balances over the study period.


2021 ◽  
Author(s):  
Laura Helene Rasmussen ◽  
Wenxin Zhang ◽  
Per Ambus ◽  
Per-Erik Jansson ◽  
Barbara Kitzler ◽  
...  

Abstract Understanding N budgets of tundra ecosystems is crucial for projecting future changes in plant community composition, greenhouse gas balances and soil N stocks. Winter warming can lead to higher tundra winter nitrogen (N) mineralization rates, while summer warming may increase both growing season N mineralization and plant N demand. The undulating tundra landscape is inter-connected through water and solute movement on top of and within near-surface soil, but the importance of lateral N fluxes for tundra N budgets is not well known. We studied the quantity and fate of lateral N fluxes in the snowmelt period with a shallow thaw layer, and the late growing season with a deeper thaw layer. We used 15N to trace inorganic lateral N movement in a Low-arctic mesic tundra heath slope in West Greenland and to quantify the fate of N in the receiving area. We found that half of the early-season lateral N input was retained by the receiving ecosystem, whereas half was transported downslope. Plants appear as poor utilizers of early-season N, indicating that higher winter N mineralization may influence plant growth and carbon (C) sequestration less than expected. Still, evergreen plants were better at utilizing early-season N, highlighting how changes in N availability may impact plant community composition. In contrast, later growing season lateral N input was deeper and offered an advantage to deeper-rooted deciduous plants. The measurements suggest that N input driven by future warming at the study site will have no significant impact on the overall N2O emissions. Our work underlines how tundra ecosystem N allocation, C budgets and plant community composition vary in their response to lateral N inputs, which may help us understand future responses in a warmer Arctic.


2021 ◽  
Vol 34 (10) ◽  
pp. 3799-3819
Author(s):  
Hyung-Gyu Lim ◽  
Jong-Yeon Park ◽  
John P. Dunne ◽  
Charles A. Stock ◽  
Sung-Ho Kang ◽  
...  

AbstractHuman activities such as fossil fuel combustion, land-use change, nitrogen (N) fertilizer use, emission of livestock, and waste excretion accelerate the transformation of reactive N and its impact on the marine environment. This study elucidates that anthropogenic N fluxes (ANFs) from atmospheric and river deposition exacerbate Arctic warming and sea ice loss via physical–biological feedback. The impact of physical–biological feedback is quantified through a suite of experiments using a coupled climate–ocean–biogeochemical model (GFDL-CM2.1-TOPAZ) by prescribing the preindustrial and contemporary amounts of riverine and atmospheric N fluxes into the Arctic Ocean. The experiment forced by ANFs represents the increase in ocean N inventory and chlorophyll concentrations in present and projected future Arctic Ocean relative to the experiment forced by preindustrial N flux inputs. The enhanced chlorophyll concentrations by ANFs reinforce shortwave attenuation in the upper ocean, generating additional warming in the Arctic Ocean. The strongest responses are simulated in the Eurasian shelf seas (Kara, Barents, and Laptev Seas; 65°–90°N, 20°–160°E) due to increased N fluxes, where the annual mean surface temperature increase by 12% and the annual mean sea ice concentration decrease by 17% relative to the future projection, forced by preindustrial N inputs.


2021 ◽  
Author(s):  
Elizabeth M. Flint ◽  
Matthew J. Ascott ◽  
Daren C. Gooddy ◽  
Benjamin W.J. Surridge ◽  
Mason O. Stahl

&lt;p&gt;Within in the United States some 54 km&lt;sup&gt;3&lt;/sup&gt; of water is withdrawn annually for public supply. Around 16% of this water is subsequently lost through leakage as it moves through distribution networks. These processes not only have implications both economically and for water security, but the substantial redistribution of water has also been shown to cause significant perturbations in elemental cycling. Due to its importance for ecological health and global food production, this research attempts to quantify the nitrogen (N) fluxes associated with a range of Public Water Supply processes, such as abstraction and leakage. Using county level data sets, these N fluxes will be determined across the contiguous United States, and the significance of results evaluated through comparisons with other quantified N fluxes. Assessments will also be made on how the absolute and relative significance of these fluxes may change in the future, such as due to evolving water demands as a result of the combined drivers of changing climate and increasing population. Outputs from the US will form part of a wider global assessment, including comparisons with less developed countries.&lt;/p&gt;


2021 ◽  
Author(s):  
Julie Leroy ◽  
Fabien Ferchaud ◽  
Catherine Giauffret ◽  
Bruno Mary ◽  
Laura Fingar ◽  
...  

Abstract Nitrogen (N) recycling is a key mechanism to ensure the sustainability of miscanthus production with no or small fertiliser inputs, but little is known on the subject in miscanthus species other than the most cultivated Miscanthus × giganteus. This field experiment on Miscanthus × giganteus and Miscanthus sinensis quantified plant biomass and N stock dynamics during two years. Endogenous net N fluxes, calculated by the difference in plant N content throughout time, were higher in Miscanthus × giganteus than in Miscanthus sinensis. Indeed, 79 kg N ha-1 and 105 to 197 kg N ha-1 were remobilized during spring and autumn respectively for Miscanthus × giganteus, as opposed to 13 to 25 kg N ha-1 and 46 to 128 kg N ha-1 for Miscanthus sinensis. However, their N recycling efficiency, defined as the ratio between N remobilisation fluxes and the maximum above-ground N content, did not differ significantly. It ranged from 8 to 27% for spring remobilisation and from 63 to 74% and 24 to 38% for autumn remobilization calculated on above-ground and below-ground N respectively. Exogenous N, the main source of N to constitute maximum plant N content for all genotypes, was provided by fertilisation (22 to 24%) and organic matter mineralisation or other sources (43 to 59%). During winter, 50 to 56% of plant N content was lost. Abscised leaves constituted an additional loss of 6 to 12%. Our results show that Miscanthus sinensis is as efficient as Miscanthus × giganteus and as performant as other perennial species concerning N functioning.


Nitrogen ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 167-189
Author(s):  
Daniel M. Alongi

Nitrogen (N) cycling in mangroves is complex, with rapid turnover of low dissolved N concentrations, but slow turnover of particulate N. Most N is stored in soils. The largest sources of N are nearly equal amounts of mangrove and benthic microalgal primary production. Dissolved N fluxes between the forests and tidal waters show net uptake, indicating N conservation. N2-fixation is underestimated as rapid rates measured on tree stems, aboveground roots and cyanobacterial mats cannot currently be accounted for at the whole-forest scale due to their extreme patchiness and the inability to extrapolate beyond a localized area. Net immobilization of NH4+ is the largest ecosystem flux, indicating N retention. Denitrification is the largest loss of N, equating to 35% of total N input. Burial equates to about 29% of total inputs and is the second largest loss of N. Total inputs slightly exceed total outputs, currently suggesting net N balance in mangroves. Mangrove PON export equates to ≈95% of PON export from the world’s tropical rivers, but only 1.5% of the entire world’s river discharge. Mangrove N2O emissions, denitrification, and burial contribute 0.4%, 0.5–2.0% and 6%, respectively, to the global coastal ocean, which are disproportionate to their small worldwide area.


2020 ◽  
Vol 11 ◽  
Author(s):  
Erwan Le Deunff ◽  
Patrick Beauclair ◽  
Julien Lecourt ◽  
Carole Deleu ◽  
Philippe Malagoli

With regard to thermodynamics out of equilibrium, seedlings are open systems that dissipate energy towards their environment. Accordingly, under nutritional steady-state conditions, changes in external concentrations of one single ion provokes instability and reorganization in the metabolic and structure/architecture of the seedling that is more favorable to the fluxes of energy and matter. This reorganization is called a bifurcation and is described in mathematics as a non-linear dynamic system. In this study, we investigate the non-linear dynamics of 15N fluxes among cellular compartments of B. napus seedlings in response to a wide range of external NO3−15 concentrations (from 0.05 to 20 mM): this allows to determine whether any stationary states and bifurcations could be found. The biphasic behavior of the root NO3−15 uptake rate (vin) was explained by the combined cooperative properties between the vapp (N uptake, storage and assimilation rate) and vout (N translocation rate) 15N fluxes that revealed a unique and stable stationary state around 0.28 mM nitrate. The disappearance of this stationary state around 0.5 mM external nitrate concentrations provokes a dramatic bifurcation in 15N flux pattern. This bifurcation in the vin and vout15N fluxes fits better with the increase of BnNPF6.3/NRT1.1 expression than BnNRT2.1 nitrate transporter genes, confirming the allosteric property of the BnNPF6/NRT1.1 transporter, as reported in the literature between low and high nitrate concentrations. Moreover, several statistically significant power-law equations were found between variations in the shoots tryptophan concentrations (i.e., IAA precursor) with changes in the vapp and vout15N fluxes as well as a synthetic parameter of plant N status estimated from the root/shoot ratio of total free amino acids concentrations. These relationships designate IAA as one of the major biological parameters related to metabolic and structural-morphological reorganization coupled with the N and water fluxes induced by nitrate. The results seriously challenge the scientific grounds of the concept of high- and low-affinity of nitrate transporters and are therefore discussed in terms of the ecological significance and physiological implications on the basis of recent agronomic, physiological and molecular data of the literature.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 851
Author(s):  
Nils Hanik ◽  
Marcel Best ◽  
Michael J. Schueller ◽  
Ryan Tappero ◽  
Richard A. Ferrieri

In the struggle to survive herbivory by leaf-feeding insects, plants employ multiple strategies to defend themselves. One mechanism by which plants increase resistance is by intensifying their responsiveness in the production of certain defense agents to create a rapid response. Known as defense priming, this action can accelerate and amplify responses of metabolic pathways, providing plants with long-lasting resistance, especially when faced with waves of attack. In the work presented, short-lived radiotracers of carbon administered as 11CO2 and nitrogen administered as 13NH3 were applied in Nicotiana tabacum, to examine the temporal changes in ‘new’ C/N utilization in the biosynthesis of key amino acids (AAs). Responses were induced by using topical application of the defense hormone jasmonic acid (JA). After a single treatment, metabolic partitioning of recently fixed carbon (designated ‘new’ carbon and reflected as 11C) increased through the shikimate pathway, giving rise to tyrosine, phenylalanine and tryptophan. Amplification in ‘new’ carbon fluxes preceded changes in the endogenous (12C) pools of these AAs. Testing after serial JA treatments revealed that fluxes of ‘new’ carbon were accelerated, amplified and sustained over time at this higher rate, suggesting a priming effect. Similar results were observed with recently assimilated nitrogen (designated ‘new’ nitrogen reflected as 13N) with its partitioning into serine, glycine and glutamine, which play important roles supporting the shikimate pathway and downstream secondary metabolism. Finally, X-ray fluorescence imaging revealed that levels of the element Mn, an important co-factor for enzyme regulation in the shikimate pathway, increased within JA treated tissues, suggesting a link between plant metal ion regulation and C/N metabolic priming.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 786 ◽  
Author(s):  
Yong He ◽  
Yilin Shi ◽  
Hao Liang ◽  
Kelin Hu ◽  
Lingling Hou

The impact of soil nutrient depletion on crop production is a thoroughly researched issue; however, robust assessments on the impact of climate change on water and N fluxes in agroecosystem are lacking. The complexity of soil water and N fluxes in response to climate change under agroecosystems makes simulation-based approaches to this issue appealing. This study evaluated the responses of crop yield, soil water, and N fluxes of a wheat–maize rotation to two Representative Concentration Pathways climate scenarios (RCP4.5 and RCP8.5) at Tai’an, a representative site on the North China Plain (NCP). Results showed that the mean air temperature and accumulated precipitation for both winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) growing seasons changed in both magnitude and pattern under various climate scenarios. The temperature increases shortened the growth periods of these two crops by more than 13 days and decrease summer maize yields (P < 0.05). These results are illustrated by lower yield results associated with RCP4.5 (20.5%) and RCP8.5 (19.3%) climate scenarios, respectively. During the winter wheat growing season, water drainage examined in the climate scenarios was significantly higher (more than double) than the baseline, and there was no significant change to nitrate leaching and denitrification. In the summer maize growing season, with continuously rising temperatures, the ranking for evaporation was in the order baseline < RCP4.5 < RCP8.5, however, the opposite ranking applied for transpiration and evapotranspiration. The increase in water drainage was 1.4 times higher than the baseline, whereas the nitrate leaching in soil significantly decreased. Our simulation results provide an opportunity to improve the understanding of soil water and N fluxes in agroecosystems, which can lead to deficient or excess N under future climate conditions.


2020 ◽  
Author(s):  
Erich Inselsbacher ◽  
Jakob Heinzle ◽  
Andreas Schindlbacher

&lt;p&gt;Forests are the main contributors to the global terrestrial carbon (C) sink but several studies suggest that global warming could significantly reduce their CO&lt;sub&gt;2&lt;/sub&gt; mitigation potential. The capacity of forest plants to sequester C is closely linked to soil nitrogen (N) availability, a major control of plant growth and ecosystem functioning. An increase of soil temperature caused by global change is critically affecting soil N supply rates, both directly by increasing diffusive N fluxes in the soil solution and indirectly by accelerating soil N turn-over rates. In recent short-term laboratory incubation studies, an increase in soil temperature has not only led to a significant increase in diffusive N fluxes but also to a concomitant shift in N quality available for plant uptake towards a higher portion of inorganic N forms compared to small organic N forms such as amino acids. However, until now long-term effects of soil warming on soil N fluxes have not been studied. Here, we present first results from a study on soil N availabilities at the long-term soil warming experimental site Achenkirch (Austria) in the Limestone Alps. This site is one of the few&lt;em&gt; in situ&lt;/em&gt; climate manipulation experiments operational for more than 10 years and has already provided a wealth of novel insights into the potential effects of global warming on forest ecosystem responses. Applying &lt;em&gt;in situ&lt;/em&gt; microdialysis, we estimated diffusive fluxes of inorganic N and amino acids along the growing season in soils warmed by resistance heating cables since 2005 (+4 &amp;#176;C compared to control plots) and control soils. Fluxes of all N forms were highly variable within each subplot (2 x 2 m) and reflected the high heterogeneity of soils at this forest site. Interestingly, fluxes of amino acids were less variable than of nitrate or ammonium throughout the year, indicating comparably stable protein depolymerization rates. In summary, long-term soil warming affected diffusive N fluxes but less than other factors operating on smaller (&lt; 1 cm) scales.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document