The effect of preceding crop on wheat grain zinc concentration and its relationship to total amino acids and dissolved organic carbon in rhizosphere soil solution

2013 ◽  
Vol 50 (2) ◽  
pp. 239-247 ◽  
Author(s):  
Shabnam Soltani ◽  
Amir H. Khoshgoftarmanesh ◽  
Majid Afyuni ◽  
Mehran Shrivani ◽  
Rainer Schulin
2016 ◽  
Vol 13 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Xiao-guo Wang ◽  
Chang-sheng Li ◽  
Yong Luo ◽  
Ke-ke Hua ◽  
Ming-hua Zhou

Author(s):  
Thomas S. Bianchi ◽  
Elizabeth A. Canuel

This chapter discusses proteins, which make up approximately 50% of organic matter and contain about 85% of the organic nitrogen in marine organisms. Peptides and proteins comprise an important fraction of the particulate organic carbon (13–37%) and particulate organic nitrogen (30–81%), as well as dissolved organic nitrogen (5–20%) and dissolved organic carbon (3–4%) in oceanic and coastal waters. In sediments, proteins account for approximately 7 to 25% of organic carbon and an estimated 30 to 90% of total nitrogen. Amino acids are the basic building blocks of proteins. This class of compounds is essential to all organisms and represents one of the most important components in the organic nitrogen cycle. Amino acids represent one of the most labile pools of organic carbon and nitrogen.


2014 ◽  
Vol 28 (5) ◽  
pp. 497-509 ◽  
Author(s):  
Marta Camino-Serrano ◽  
Bert Gielen ◽  
Sebastiaan Luyssaert ◽  
Philippe Ciais ◽  
Sara Vicca ◽  
...  

2014 ◽  
Vol 83 ◽  
pp. 155-165 ◽  
Author(s):  
Arne Verstraeten ◽  
Bruno De Vos ◽  
Johan Neirynck ◽  
Peter Roskams ◽  
Maarten Hens

2016 ◽  
Author(s):  
M. Camino-Serrano ◽  
E. Graf Pannatier ◽  
S. Vicca ◽  
S. Luyssaert ◽  
M. Jonard ◽  
...  

Abstract. Dissolved organic carbon (DOC) in soil solution is connected to DOC in surface waters through hydrological flows. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site-studies has failed so far to establish consistent trends in soil solution DOC, whereas increasing concentrations in European surface waters over the past decades appear to be the norm, possibly as a result from acidification recovery. The objectives of this study were therefore to understand the long-term trends of soil solution DOC from a large number of European forests (ICP Forests Level II plots) and determine their main physico-chemical and biological controls. We applied trend analys is at two levels: 1) to the entire European dataset and 2) to the individual time series and related trends with plot characteristics, i.e., soil and vegetation properties, soil solution chemistry and atmospheric deposition loads. Analyses of the entire dataset showed an overall increasing trend in DOC concentrations in the organic layers, but, at individual plots and depths, there was no clear overall trend in soil solution DOC across Europe with temporal slopes of soil solution DOC ranging between −16.8 % yr−1 and +23 % yr−1 (median= +0.4 % yr−1). The non-significant trends (40 %) outnumbered the increasing (35 %) and decreasing trends (25 %) across the 97 ICP Forests Level II sites. By means of multivariate statistics, we found increasing DOC concentrations with increasing mean nitrate (NO3−) deposition and decreasing DOC concentrations with decreasing me an sulphate (SO42−) deposition, with the magnitude of these relationships depending on plot deposition history. While the attribution of increasing trends in DOC to the reduct ion of SO42− deposition could be confirmed in N-poorer forests, in agreement with observations in surface waters, this was not the case in N-richer forests. In conclusion, long-term trends of soil solution DOC reflected the interactions between controls acting at local (soil and vegetation properties) and regional (atmospheric deposition of SO42− and inorganic N) scales.


2015 ◽  
Vol 24 (1) ◽  
pp. 27-33
Author(s):  
Jacek Jaszczyński

Abstract The object of this study was the concentration of dissolved organic carbon (DOC) in soil solution related to groundwater table, soil temperature, moisture, redox potential and intensive storm rain and their changes during ten years (2001–2010). The studies were localized in drained and agriculturally used Kuwasy Mire situated in the middle basin of the Biebrza River, north-eastern Poland. The study site was situated on a low peat soil managed as intensively used grassland. The soil was recognized as peat-muck in the second stage of the mucking process. DOC concentration was determined by means of the flow colorimetric method using the Skalar equipment. Mean in the whole study period DOC concentration in soil solution was 72 mg·dm−3. A significant positive correlation was observed between DOC concentration and soil temperature at 30 cm depth. The highest DOC concentrations were observed from July to October accompanied by the lowest ground water level. The DOC concentration in soil solution showed also a significant correlation with soil redox potential at 20 cm depth – a border between muck and peat layers. This layer is potentially most active with respect to biochemical transformation. There was no relationship between DOC concentration and soil moisture. However, the influence of torrential rains on the intensity of DOC removal was demonstrated in this study.


Sign in / Sign up

Export Citation Format

Share Document