Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: a long-term simulation using the DNDC-Rice model

2014 ◽  
Vol 50 (6) ◽  
pp. 879-889 ◽  
Author(s):  
Kazunori Minamikawa ◽  
Tamon Fumoto ◽  
Masayuki Itoh ◽  
Michiko Hayano ◽  
Shigeto Sudo ◽  
...  
2016 ◽  
Vol 566-567 ◽  
pp. 641-651 ◽  
Author(s):  
Kazunori Minamikawa ◽  
Tamon Fumoto ◽  
Toshichika Iizumi ◽  
Nittaya Cha-un ◽  
Uday Pimple ◽  
...  

2010 ◽  
Vol 99 (S1) ◽  
pp. 241-241 ◽  
Author(s):  
Achim Kopf ◽  
Georg Delisle ◽  
Eckhard Faber ◽  
Behrouz Panahi ◽  
Chingiz S. Aliyev ◽  
...  

2009 ◽  
Vol 99 (S1) ◽  
pp. 227-240 ◽  
Author(s):  
Achim Kopf ◽  
Georg Delisle ◽  
Eckhard Faber ◽  
Behrouz Panahi ◽  
Chingiz S. Aliyev ◽  
...  

2011 ◽  
Vol 8 (1) ◽  
pp. 1529-1554 ◽  
Author(s):  
D. Liu ◽  
X. Liu ◽  
Y. Liu ◽  
L. Li ◽  
G. Pan ◽  
...  

Abstract. Biological stabilization within accumulated soil organic carbon (SOC) has not been well understood, while its role in physical and chemical protection as well as of chemical recalcitrance had been addressed in Chinese rice paddies. In this study, topsoil samples were collected and respiratory activity measured in situ following rice harvest under different fertilization treatments of three long-term experimental sites across southern China in 2009. The SOC contents, microbial biomass carbon (SMBC) and nitrogen (SMBN) were analysed using chemical digestion and microbial community structure assessment via clony dilute plate counting methods. While SOC contents were consistently higher under compound chemical fertilization (Comp-Fert) or combined organic and inorganic fertilization (Comb-Fert) compared to N fertilization only (N-Fert), there was significantly higher fungal-bacterial ratio under Comb-Fert than under N-Fert and Comp-Fert. When subtracting the background effect under no fertilization treatment (Non-Fert), the increase both in SMBC and SMBN under fertilization treatment was found very significantly correlated to the increase in SOC over controls across the sites. Also, the ratio of culturable fungal to bacterial population numbers (F/B ratio) was well correlated with soil organic carbon contents in all samples across the sites studied. SOC accumulation favoured a build-up the microbial community with increasing fungal dominance in the rice paddies under fertilization treatments. While soil respiration rates were high under Comb-Fert as a result of enhanced microbial community build-up, the specific soil respiratory activity based on microbial biomass carbon was found in a significantly negatively correlation with the SOC contents for overall samples. Thus, a fungal-dominated microbial community seemed to slow SOC turnover, thereby favouring SOC accumulation under Comp-Fert or under Comb-Fert in the rice paddies. Therefore, the biological stabilization process is of importance in SOC sequestration in the rice paddies, operating with physical and chemical protection and chemical recalcitrance. However, sufficient understanding and prediction of SOM dynamics needs further quantitative characterization of the simultaneous operation of several mechanisms.


2019 ◽  
Vol 10 ◽  
Author(s):  
Yury Tatiana Granja-Salcedo ◽  
Rodolfo Maciel Fernandes ◽  
Rafael Canonenco de Araujo ◽  
Luciano Takeshi Kishi ◽  
Telma Teresinha Berchielli ◽  
...  

2016 ◽  
Vol 78 (1-2) ◽  
Author(s):  
Fazli P. ◽  
Hasfalina C. M. ◽  
Mohamed Azwan M. Z. ◽  
Umi Kalsom M. S. ◽  
Nor Aini A. R. ◽  
...  

Methane (CH4) is 21 times more powerful as a greenhouse gas than carbon dioxide. Wetlands including flooded paddy fields are one of the major sources for this gas. Paddy fields are responsible for producing 25 to 54 Tg of CH4 annually. Methane emission rate could be affected by several factors such as irrigation pattern, fertilizer type, soil organic matter and soil temperature. Among them, soil temperature is a determining factor which deserves to be investigated. This study performed with the aim of understanding the effect of soil temperature on the methane emission rate from paddy soil in a short period of time (hourly) and long term (during rice growing season). The results of this study suggest that soil temperature could control the amount of methane emission and there is a positive and strong correlation in both soil temperature and methane emission pattern in short period of time. However, in case of long term trend, other factors such as water management and plant age decreased this correlation from 0.768 to 0.528.


2013 ◽  
Vol 115 (1-3) ◽  
pp. 15-20 ◽  
Author(s):  
C. Liu ◽  
Z.P. Zhu ◽  
B. Shang ◽  
Y.X. Chen ◽  
T.J. Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document