mud volcano
Recently Published Documents


TOTAL DOCUMENTS

529
(FIVE YEARS 110)

H-INDEX

50
(FIVE YEARS 4)

2022 ◽  
Vol 9 ◽  
Author(s):  
Hung-Chun Chao ◽  
Chen-Feng You ◽  
In-Tian Lin ◽  
Hou-Chun Liu ◽  
Ling-Ho Chung ◽  
...  

Mud volcano is one of the most important conduits for deep seated materials to migrate upward in sedimentary basins, convergent margins, and subduction zones. Understanding their temporal and spatial characteristics and variations provides us the important information on fluid sources and chemical compositions at depth. Mud volcano Lei-Gong-Huo (MV LGH) is a unique mud volcano, which is located on the mélange formation lying on the andesitic volcanic arc. Fluids emitted from 46 mud pools in MV LGH in eastern Taiwan were sampled and their major trace constitutes as well as H, O, and Sr isotopes (87Sr/86Sr and δ88Sr) were measured. Major constitutes of the fluids are Cl−, Na, and Ca. Compared with seawater, LGH fluids have lower Cl−, δD, δ18O, Na/Cl, K/Cl, and Mg/Cl but higher Ca/Cl ratios, indicating water–rock interaction of igneous rock and the ancient seawater at the source region. This interpretation is further supported by Sr isotopes, which show low value of 87Sr/86Sr ratio down to 0.70708. The result of spatial distribution showing strong negative correlation between Na and Ca concentration as well as Ca and 87Sr/86Sr ratios indicates that two end-member mixing is the major chemical characteristic. The fluids interacting with igneous rock carry high Ca, high δ88Sr, low Na, and low 87Sr/86Sr ratio, while those interacting with sedimentary rock carry low Ca, low δ88Sr, high Na, and high 87Sr/86Sr ratio. The source from the igneous region dominates the eastern and southeastern parts of the mud pools while sedimentary source dominates the western and northwestern parts. Most mud pools show mixing behavior between the two sources. Some of the sedimentary-dominated mud pools reveal existence of residual ancient water as indicated by 87Sr/86Sr. The major factor to fractionate the stable Sr isotopes in LGH waters is the source lithology. In summary, fluids emitted by mud pools in LGH originate from two sources, which are water–rock interactions of igneous rock with the ancient seawater from the east and sedimentary rock from the west at depth, resulting from the complex geologic background of mélange formation.


2022 ◽  
Vol 07 (01) ◽  
pp. 48-64
Author(s):  
Ardian Novianto ◽  
Sutanto   ◽  
Suharsono   ◽  
Carolus Prasetyadi ◽  
Wahyu Hidayat
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 195
Author(s):  
Yuning Yan ◽  
Jianping Liao ◽  
Junhui Yu ◽  
Changliang Chen ◽  
Guangjian Zhong ◽  
...  

The Dongsha Island (DS) is located in the mid-northern South China Sea continental margin. The waters around it are underlain by the Chaoshan Depression, a relict Mesozoic sedimentary basin, blanketed by thin Cenozoic sediments but populated with numerous submarine hills with yet less-known nature. A large hill, H110, 300 m high, 10 km wide, appearing in the southeast to the Dongsha Island, is crossed by an ocean bottom seismic and multiple channel seismic surveying lines. The first arrival tomography, using ocean bottom seismic data, showed two obvious phenomena below it: (1) a low-velocity (3.3 to 4 km/s) zone, with size of 20 × 3 km2, centering at ~4.5 km depth and (2) an underlying high-velocity (5.5 to 6.3 km/s) zone of comparable size at ~7 km depth. MCS profiles show much-fragmented Cenozoic sequences, covering a wide chaotic reflection zone within the Mesozoic strata below hill H110. The low-velocity zone corresponds to the chaotic reflection zone and can be interpreted as of highly-fractured and fluid-rich Mesozoic layers. Samples dredged from H110 comprised of illite-bearing authigenic carbonate nodules and rich, deep-water organisms are indicative of hydrocarbon seepage from deep source. Therefore, H110 can be inferred as a mud volcano. The high-velocity zone is interpreted as of magma intrusion, considering that young magmatism was found enhanced over the southern CSD. Furthermore, the origin of H110 can be speculated as thermodynamically driven, i.e., magma from the depths intrudes into the thick Mesozoic strata and promotes petroleum generation, thus, driving mud volcanism. Mud volcanism at H110 and the occurrence of a low-velocity zone below it likely indicates the existence of Mesozoic hydrocarbon reservoir, which is in favor of the petroleum exploration.


Author(s):  
Muhammad Burhannudinnur ◽  
Dardji Noeradi

Numerous researchers have carried out studies on the mud volcano system in East Java. However, there have been no experiments on the mud volcano system's mechanism, including overpressure confirmed by direct subsurface data. Therefore, this study aims to directly evaluate the mud volcano system's mechanism using the Hele-Shaw (H-S) experiment with the subsurface data confirmation. The H-S experiment utilized four primary materials: quartz sand diameter below 250 µm and 320 µm to analogize the porous layer. Gypsum flour clay is the ductile layer, while mud from the Kuwu and Kesongo Mud Volcanoes is the original material from nature. Wax represents impermeable material. The sealing layer is made of wax, and oxygen represents the natural fluids of the rock formation. The overpressured zone is created by pumping oxygen into a layer of quartz sand covered by a wax as an impermeable layer. Pressure is measured digitally, and the process is continuously recorded to produce traceable data. Each material was experimented on individually to determine the critical phase characteristics, valve fault structure geometry, and validation with seismic interpretation. The results indicate that the critical phase of the mud volcano system is characterized by the dome structure at the surface, with high intensify of gas and oil seepage. Piercement structure geometry is shown by plumbing of fluidization zone, which becomes shallower than before. Furthermore, each material's piercement structure geometry shows a consistent pattern, with differences in the density of the fault and pressure structures. Thus, the H-S experiment's validation with seismic interpretation shows a similar geometry in pressure structures and valve faults as the mud volcano system's migration paths.


PalZ ◽  
2021 ◽  
Author(s):  
Luis Somoza ◽  
José Luis Rueda ◽  
Francisco J. González ◽  
Blanca Rincón-Tomás ◽  
Teresa Medialdea ◽  
...  

AbstractExtensive beds of the deep-sea mussel Bathymodiolus mauritanicus (currently also known as Gigantidas mauritanicus) linked to active cold seeps related to fissure-like activity on Al Gacel mud volcano, Gulf of Cádiz, were filmed and sampled for the first time during the oceanographic expedition SUBVENT-2 aboard R/V Sarmiento de Gamboa. Al Gacel mud volcano is one of up to 80 fluid venting submarine structures (mud volcanoes and mud volcano/diapir complexes) identified in the Gulf of Cádiz as result of explosive venting of hydrocarbon-enriched fluids sourced from deep seated reservoirs. This mud volcano is a cone-shaped edifice, 107 m high, 944 m in diameter constituted by mud breccias and, partially covered by pavements of seep carbonates. Extensive beds of this deep-sea mussel were detected at the northern flank at 810–815 m water depth associated with bacterial mats around intermittent buoyant vertical bubble methane plumes. High methane concentrations were measured in the water column above living mussel beds. Other chemosymbiotic species (Siboglinum sp., Solemya elarraichensis, Isorropodon sp., Thyasira vulcolutre and Lucinoma asapheus) were also found in different parts of Al Gacel mud volcano. Al Gacel mud volcano may currently represent one of the most active mud volcanoes in the Gulf of Cádiz, delivering significant amounts of thermogenic hydrocarbon fluids which contribute to foster the extensive chemosynthesis-based communities detected. This finding is of paramount importance for linking extremophile bivalve populations along the North Atlantic, including cold seeps of the Gulf of México, hydrothermal vents of the Mid-Atlantic Ridge and now, detailed documented at the Gulf of Cádiz.


2021 ◽  
Vol 946 (1) ◽  
pp. 012040
Author(s):  
A V Kopanina ◽  
K A Shvidskaya

Abstract Currently Earth remote probing to study vegetation dynamics and monitor volcanic activity is of great scientific interest. The purpose of this study is to create a large-scale outline map of Yuzhno-Sakhalinsk mud volcano which will include the topography objects, mud fields of eruptions of various years and gryphons, and to perform semi-automatic classification of Yuzhno-Sakhalinsk mud volcano. Work was performed with QGIS software using the following modules: «QuickMapServices», «Freehandrastergeoreference», «LatLanTools», and «Semi-AutomaticClassificationPlugin». We developed an outline map of Yuzhno-Sakhalinsk mud volcano on a scale of 1:10000, which shows how the mud flows have changed directions over the last 70 years, as well as mud fields have been formed over the last 20 years. Using semi-automatic classification of satellite images from Sentinel-2A satellite in various color channel sets, we obtained two premaps of Yuzhno-Sakhalinsk mud volcano vegetation on a scale of 1:50 000. Satellite monitoring of YuSMV activity allows us to track the eruptive activity of the volcano, and assess its impact on vegetation.


2021 ◽  
Vol 21 (9) ◽  
pp. 2881-2898
Author(s):  
Fabio Brighenti ◽  
Francesco Carnemolla ◽  
Danilo Messina ◽  
Giorgio De Guidi

Abstract. Active geological processes often generate a ground surface response such as uplift, subsidence and faulting/fracturing. Nowadays remote sensing represents a key tool for the evaluation and monitoring of natural hazards. The use of unmanned aerial vehicles (UAVs) in relation to observations of natural hazards encompasses three main stages: pre- and post-event data acquisition, monitoring, and risk assessment. The mud volcano of Santa Barbara (Municipality of Caltanissetta, Italy) represents a dangerous site because on 11 August 2008 a paroxysmal event caused serious damage to infrastructures within a range of about 2 km. The main precursors to mud volcano paroxysmal events are uplift and the development of structural features with dimensions ranging from centimeters to decimeters. Here we present a methodology for monitoring deformation processes that may be precursory to paroxysmal events at the Santa Barbara mud volcano. This methodology is based on (i) the data collection, (ii) the structure from motion (SfM) processing chain and (iii) the M3C2-PM algorithm for the comparison between point clouds and uncertainty analysis with a statistical approach. The objective of this methodology is to detect precursory activity by monitoring deformation processes with centimeter-scale precision and a temporal frequency of 1–2 months.


Sign in / Sign up

Export Citation Format

Share Document