scholarly journals Phospholipid fatty acids in soil—drawbacks and future prospects

Author(s):  
Rainer Georg Joergensen

Abstract The current opinion and position paper highlights (1) correct assignation of indicator phospholipid fatty acids (PLFA), (2) specificity and recycling of PLFA in microorganisms, and (3) complete extraction and detection of PLFA. The straight-chain PLFA 14:0, 15:0, 16:0, and 17:0 occur in all microorganisms, i.e., also in fungi and not only in bacteria. If the phylum Actinobacteria is excluded from the group of Gram-positive bacteria, all remaining bacteria belong to the bacterial phylum Firmicutes, which should be considered. The PLFA 16:1ω5 should be used as an indicator for the biomass of arbuscular mycorrhizal fungi (AMF) as there is no experimental evidence that they occur in marked amounts in Gram-negative bacteria. Fungal PLFA should embrace the AMF-specific 16:1ω5. In the presence of plants, ergosterol should be used instead of the PLFA 18:2ω6,9 and 18:1ω9 as fungal indicators for Mucoromycotina, Ascomycota, and Basidiomycota. The majority of indicator PLFA are not fully specific for a certain microbial group. This problem might be intensified by recycling processes during decomposition to an unknown extent. Soil handling and extraction conditions should be further optimized. The reliability and accuracy of gas chromatographic separation need to be regularly checked against unintentional variations. PLFA analysis will still be of interest over the next decades as an important independent control of DNA-based methods.

2017 ◽  
Vol 57 (2) ◽  
pp. 173-184 ◽  
Author(s):  
Marieta Hristozkova ◽  
Maria Geneva ◽  
Ira Stancheva ◽  
Ivan Iliev ◽  
Concepción Azcón-Aguilar

AbstractPhysalis peruvianais one of the most promising tropical fruit plants because of its rapid growth, high yield, and nutritional quality. This study was designed to investigate plant development under heavy metal contamination (Cd, Pb) and responsiveness to arbuscular mycorrhizal fungi (AMF) colonization byRhizophagus clarumandClaroideoglomus claroideum. The antioxidant capacity, total lipid content and fatty acid profile in fruits, accumulation of Cd and Pb in different plant parts, plant dry biomass, and mycorrhizal colonization were determined. As a result of inoculation, a considerable reduction in Cd and Pb in the fruits was observed, compared with non-inoculated plants. The fruit number and dry weight increased in plants associated withC. claroideum.These plants also showed higher acid phosphatase activity, root protein accumulation and glomalin production. The type of antioxidant defense was AMF strain-dependent. Antioxidant activity and H2O2neutralization were enzymatic rather than non-enzymatic processes in the fruits ofC. claroideumplants compared with those forming an association withR. clarum. Mycorrhizal establishment changed the composition and concentration of fruits’ fatty acids. The ratio of unsaturated fatty acids was increased. With respect to the accumulation of bioactive compounds in golden berry the present findings are important for obtaining the optimum benefits of mycorrhizal association under unfavorable conditions.


Science ◽  
2017 ◽  
Vol 356 (6343) ◽  
pp. 1175-1178 ◽  
Author(s):  
Leonie H. Luginbuehl ◽  
Guillaume N. Menard ◽  
Smita Kurup ◽  
Harrie Van Erp ◽  
Guru V. Radhakrishnan ◽  
...  

2019 ◽  
Author(s):  
Yuta Sugiura ◽  
Rei Akiyama ◽  
Sachiko Tanaka ◽  
Koji Yano ◽  
Hiromu Kameoka ◽  
...  

AbstractArbuscular mycorrhizal (AM) fungi, forming symbiotic associations with land plants, are obligate symbionts that cannot complete their natural life cycle without a host. Recently, fatty acid auxotrophy of AM fungi is supported by studies showing that lipids synthesized by the host plants are transferred to the fungi and that the latter lack genes encoding cytosolic fatty acid synthases (1-7). Therefore, to establish an asymbiotic cultivation system for AM fungi, we tried to identify the fatty acids that could promote biomass production. To determine whether AM fungi can grow on medium supplied with fatty acids or lipids under asymbiotic conditions, we tested eight saturated or unsaturated fatty acids (C12–C18) and two β-monoacylglycerols. Only myristate (C14:0) led to an increase in biomass of Rhizophagus irregularis, inducing extensive hyphal growth and formation of infection-competent secondary spores. However, such spores were smaller than those generated symbiotically. Furthermore, we demonstrated that R. irregularis can take up fatty acids in its branched hyphae and use myristate as a carbon and energy source. Myristate also promoted the growth of Rhizophagus clarus and Gigaspora margarita. Finally, mixtures of myristate and palmitate accelerated fungal growth and induced a substantial change in fatty acid composition of triacylglycerol compared with single myristate application, although palmitate was not used as a carbon source for cell wall biosynthesis in this culture system. In conclusion, here we demonstrate that myristate boosts asymbiotic growth of AM fungi and can also serve as a carbon and energy source.Significance statementThe origins of arbuscular mycorrhizal (AM) fungi, which form symbiotic associations with land plants, date back over 460 million years ago. During evolution, these fungi acquired an obligate symbiotic lifestyle, and thus depend on their host for essential nutrients. In particular, fatty acids are regarded as crucial nutrients for the survival of AM fungi owing to the absence of genes involved in de novo fatty acid biosynthesis in the AM fungal genomes that have been sequenced so far. Here, we show that myristate initiates AM fungal growth under asymbiotic conditions. These findings will advance pure culture of AM fungi.


1995 ◽  
Vol 99 (5) ◽  
pp. 623-629 ◽  
Author(s):  
Pål Axel Olsson ◽  
Erland Bååth ◽  
Iver Jakobsen ◽  
Bengt Söderström

2021 ◽  
Author(s):  
Arezoo Paravar ◽  
Saeideh Maleki Farahani ◽  
Ali Reza Rezazadeh

Abstract Background: Application nano iron chelate and AMF fertilizer can increase plants' tolerance against water deficit stress. The main objectives of the current study were to investigate the effect of arbuscular mycorrhizal fungi (AMF) and nano iron chelate fertilizer under drought stress on grain yield, leaf chlorophyll contents, root colonization, oil percentage, and fatty acids profile of Lallemantia species. The experiment was carried out as a factorial based on a complete randomized block design consisting of three factors of irrigation levels of 90 (I90), 60 (I60), and 30% (I30) depletion of available soil water (ASW)), fertilizer levels of control (no fertilizer), AMF inoculation, and nano iron chelate, and plant species of Lallemantia (L. iberica and L. royleana) at the Research Farm of College of Agriculture, Shahed University, Tehran, Iran, in 2018/2019. Results: The results showed that increasing water deficit stress significantly decreased the above traits while applying nano iron and AMF fertilizers significantly increased them across water treatments. AMF fertilizer inoculation significantly improved both species yield. Higher root colonization by AMF inoculation enhanced seed oil and fatty acids (palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid, and Eicosenoic acid). In contrast, applying nano iron chelate by increasing chlorophyll content in any irrigation regime could enhance seed oil and some fatty acids such as palmitoleic acid. Conclusions: Water deficit stress and application of fertilizers had different effects on both species. L. iberica, compared to L. royleana, had the most tolerance to water deficit stress and the highest dependence on AMF inoculation. Overall, these results demonstrated that the application of AMF could improve major features of Lallemantia species under deficit irrigation conditions, especially at the I60 irrigation level.


2009 ◽  
Vol 329 (1-2) ◽  
pp. 315-325 ◽  
Author(s):  
Ana García-Villaraco Velasco ◽  
Agustin Probanza ◽  
F. Javier Gutierrez Mañero ◽  
Beatriz Ramos Solano ◽  
Jose Antonio Lucas

2019 ◽  
Vol 4 (10) ◽  
pp. 1654-1660 ◽  
Author(s):  
Hiromu Kameoka ◽  
Ippo Tsutsui ◽  
Katsuharu Saito ◽  
Yusuke Kikuchi ◽  
Yoshihiro Handa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document