Downscaling GCMs using the Smooth Support Vector Machine method to predict daily precipitation in the Hanjiang Basin

2010 ◽  
Vol 27 (2) ◽  
pp. 274-284 ◽  
Author(s):  
Hua Chen ◽  
Jing Guo ◽  
Wei Xiong ◽  
Shenglian Guo ◽  
Chong-Yu Xu
Author(s):  
G. Indrawan ◽  
I K P Sudiarsa ◽  
K. Agustini ◽  
Sariyasa Sariyasa

Suicide-related behaviours need to be prevented on psychiatric patients. Prediction of those behaviours based on patient medical records would be very useful for the prevention by the psychiatric hospital. This research focused on developing this prediction at the only one psychiatric hospital of Bali Province by using Smooth Support Vector Machine method, as the further development of Support Vector Machine. The method used 30.660 patient medical records from the last five years. Data cleaning gave 2665 relevant data for this research, includes 111 patients that have suicide-related behaviours and under active treatment. Those cleaned data then were transformed into ten predictor variables and a response variable. Splitting training and testing data on those transformed data were done for building and accuracy evaluation of the method model. Based on the experiment, the best average accuracy at 63% can be obtained by using 30% of relevant data as data testing and by using training data which has one-to-one ratio in number between patients that have suicide-related behaviours and patients that have no such behaviours. In the future work, accuracy improvement need to be confirmed by using Reduced Support Vector Machine method, as the further development of Smooth Support Vector Machine.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668596 ◽  
Author(s):  
Fuqiang Sun ◽  
Xiaoyang Li ◽  
Haitao Liao ◽  
Xiankun Zhang

Rapid and accurate lifetime prediction of critical components in a system is important to maintaining the system’s reliable operation. To this end, many lifetime prediction methods have been developed to handle various failure-related data collected in different situations. Among these methods, machine learning and Bayesian updating are the most popular ones. In this article, a Bayesian least-squares support vector machine method that combines least-squares support vector machine with Bayesian inference is developed for predicting the remaining useful life of a microwave component. A degradation model describing the change in the component’s power gain over time is developed, and the point and interval remaining useful life estimates are obtained considering a predefined failure threshold. In our case study, the radial basis function neural network approach is also implemented for comparison purposes. The results indicate that the Bayesian least-squares support vector machine method is more precise and stable in predicting the remaining useful life of this type of components.


Sign in / Sign up

Export Citation Format

Share Document