Prediction of the resilient modulus of non-cohesive subgrade soils and unbound subbase materials using a hybrid support vector machine method and colliding bodies optimization algorithm

2021 ◽  
Vol 275 ◽  
pp. 122140
Author(s):  
Nasrin Heidarabadizadeh ◽  
Ali Reza Ghanizadeh ◽  
Ali Behnood
2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668596 ◽  
Author(s):  
Fuqiang Sun ◽  
Xiaoyang Li ◽  
Haitao Liao ◽  
Xiankun Zhang

Rapid and accurate lifetime prediction of critical components in a system is important to maintaining the system’s reliable operation. To this end, many lifetime prediction methods have been developed to handle various failure-related data collected in different situations. Among these methods, machine learning and Bayesian updating are the most popular ones. In this article, a Bayesian least-squares support vector machine method that combines least-squares support vector machine with Bayesian inference is developed for predicting the remaining useful life of a microwave component. A degradation model describing the change in the component’s power gain over time is developed, and the point and interval remaining useful life estimates are obtained considering a predefined failure threshold. In our case study, the radial basis function neural network approach is also implemented for comparison purposes. The results indicate that the Bayesian least-squares support vector machine method is more precise and stable in predicting the remaining useful life of this type of components.


2015 ◽  
Vol 81 (2) ◽  
pp. 1209-1228 ◽  
Author(s):  
Qian Zhang ◽  
Xiujuan Liang ◽  
Zhang Fang ◽  
Tao Jiang ◽  
Yubo Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document