Atmospheric moisture budget and its regulation of the summer precipitation variability over the Southeastern United States

2013 ◽  
Vol 41 (3-4) ◽  
pp. 613-631 ◽  
Author(s):  
Laifang Li ◽  
Wenhong Li ◽  
Ana P. Barros
1995 ◽  
Vol 21 ◽  
pp. 117-122 ◽  
Author(s):  
David H. Bromwich ◽  
Biao Chen ◽  
Ren-Yow Tzeng

Precipitation predictions from globai-climate models (GCMs) for the ice-covered Arctic Ocean and the ice sheets of Antarctica are among the most important aspects of the inferred response of the polar areas to climate change. It is generally recognized that the atmospheric hydrologic cycle, which includes precipitation as a key part, is one of the components of the climate system that GCMs do not handle particularly well. The present-day atmospheric-moisture budget poleward of 70° latitude in both hemispheres, as represented by two versions of the NCAR (U.S. National Center for Atmospheric Research) community climate model (CCM1 and CCM2), is compared with observational analyses. The quantities examined on the seasonal and annual timescales are precipitation, evaporation/sublimation and atmospheric poleward moisture transport. The results are discussed in terms of the physiographic and climatic characteristics of both polar regions and how the particular models handle moisture transport: CCM1 uses the positive-moisture fixer and CCM2 the semi- Lagrangian transport. A particularly important test both for models and for observations is the degree to which the independently determined moisture-budget quantities actually balance. Deficiencies of both observations and models are discussed.


2021 ◽  
Author(s):  
Martin Medina-Elizalde ◽  
Stefan Perritano ◽  
Matthew DeCesare ◽  
Josué Polanco-Martinez ◽  
Gabriela Serrato-Marks ◽  
...  

Abstract We present new high-resolution absolute-dated stalagmite δ18O and δ13C records from the southeastern United States (SE US) spanning the last 12 thousand years (ka). A local relationship between annual rainfall amount and its amount-weighed δ18O composition exists on interannual timescales, driven mostly by an amount effect during summer and spring seasons, and by an isotopically depleted composition of fall and winter precipitation. Based on a novel interpretation of modern rainfall isotopic data, stalagmite δ18O variability is interpreted to reflect the relative contribution of summer and spring precipitation combined relative to combined fall and winter precipitation. Precipitation amount in the SE US increases during the Younger Dryas, the 8.2 ka and Little Ice Age abrupt cooling events. High precipitation during these events reflects enhancement of spring and summer precipitation while the contribution of fall and winter rainfall remained unchanged or decreased slightly. Results from this study support model simulation results that suggest increased precipitation in the SE US during Atlantic Meridional Overturning Circulation (AMOC) slowdown/shutdown (LeGrande et al., 2006; Renssen et al., 2002; Vellinga and Wood, 2002). In association with Northern Hemisphere mid-latitude cooling from the Early to mid-Holocene, annual precipitation in the SE US decreases, a pattern distinctive from that observed during abrupt cooling events related to AMOC shifts. Long-term hydroclimate change in the SE US is likely sensitive to summer insolation reduction as inferred for other tropical and subtropical regions. This study has implications for our understanding of the sensitivity of subtropical hydroclimate to factors both internal and external to the climate system in a warmer climate.


2008 ◽  
Vol 95 (3-4) ◽  
pp. 331-340 ◽  
Author(s):  
Zengxin Zhang ◽  
Qiang Zhang ◽  
Chongyu Xu ◽  
Chunling Liu ◽  
Tong Jiang

Sign in / Sign up

Export Citation Format

Share Document