moisture budget
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 17)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kerry H Cook ◽  
Edward K. Vizy

Abstract The processes that determine the seasonality of precipitation in the Congo Basin are examined using the atmospheric column moisture budget. Studying the fundamental determinants of Congo Basin precipitation seasonality supports process-based studies of variations on all time scales, including those associated with greenhouse gas-induced global warming. Precipitation distributions produced by the ERA5 reanalysis provide sufficient accuracy for this analysis, which requires a consistent dataset to relate the atmospheric dynamics and moisture distribution to the precipitation field. The Northern and Southern Hemisphere regions of the Congo Basin are examined separately to avoid the misconception that Congo Basin rainfall is primarily bimodal. While evapotranspiration is indispensable for providing moisture to the atmospheric column to support precipitation in the Congo Basin, its seasonal variations are small and it does not drive precipitation seasonality. During the equinoctial seasons, precipitation is primarily supported by meridional wind convergence in the moist environment in the 800 hPa to 500 hPa layer where moist air flows into the equatorial trough. Boreal fall rains are stronger than boreal spring rains in both hemispheres because low-level moisture divergence develops in boreal spring in association with the developing Saharan thermal low. The moisture convergence term also dominates the moisture budget during the summer season in both hemispheres, with meridional convergence in the 850-600 hPa layer as cross-equatorial flow interacts with the cyclonic flow about the Angola and Sahara thermal lows. Winter precipitation is low because of dry air advection from the winter hemisphere subtropical highs over the continent.


Polar Science ◽  
2021 ◽  
pp. 100685
Author(s):  
Sarah M. Thunberg ◽  
John E. Walsh ◽  
Eugénie S. Euskirchen ◽  
Kyle Redilla ◽  
Adrian V. Rocha

2021 ◽  
pp. 1-35
Author(s):  
Jiayu Zhang ◽  
Ping Huang ◽  
Fei Liu ◽  
Shijie Zhou

AbstractThis study investigates what forms the spatial pattern of the amplitude changes in tropical intraseasonal and interannual variability – represented by the two most important variables, precipitation (ΔP′) and circulation (Δω′) – under global warming, based on 24 models from the phase 5 of the Coupled Model Intercomparison Project (CMIP5). Diagnostic analyses reveal that the moisture budget and thermodynamic energy equations related to the ΔP′ and Δω′ proposed separately in previous studies are simultaneously tenable. As a result, we investigate the mechanism for the spatial pattern of Δω′ from the perspective of moist static energy (MSE) balance mainly considering the positive contribution from vertical advection. Therefore, based on the simplified MSE balance, the spatial pattern of Δω′ can be approximately projected based on three factors: background circulation variability ω′, the vertical gradient of mean-state MSE , and its future change Δ. Under global warming, the middle-level vertical gradient of MSE increases slightly over Indian Ocean and maritime continent and decreases over the equatorial Pacific where the increase in sea surface temperature (SST) exceeds the tropical mean. The vertical gradient of mean-state MSE is modified by the increase in vertical gradients of moisture and dry static energy (DSE) simultaneously. In short, the change in the vertical gradient of mean-state MSE under global warming can influence the moisture budget and thermodynamic energy balances, resulting in the spatial pattern of ΔP′ and Δω′ at intraseasonal and interannual timescales consequently, mainly determined by the lower boundary moisture condition in the response of SST change pattern.


2021 ◽  
pp. 1-69
Author(s):  
Johannes Mayer ◽  
Michael Mayer ◽  
Leopold Haimberger

AbstractThis study uses advanced numerical and diagnostic methods are used to evaluate the atmospheric energy budget with the fifth generation European Re-Analysis (ERA5) in combination with observed and reconstructed top-of-the-atmosphere (TOA) energy fluxes for the period 1985–2018. We assess the meridional as well as ocean-to-land energy transport and perform internal consistency checks using mass-balanced data. Furthermore, the moisture and mass budgets in ERA5 are examined and compared with previous budget evaluations using ERA-Interim as well as observation-based estimates. Results show that peak annual mean meridional atmospheric energy transports in ERA5 (4.58±0.07 PW in the northern hemisphere) are weaker compared to ERA-Interim (4.74±0.09 PW), where the higher spatial and temporal resolution of ERA5 can be excluded as possible reason. The ocean-to-land energy transport in ERA5 is reliable at least from 2000 onwards (∼2.5 PW) such that the imbalance between net TOA fluxes and lateral energy fluxes over land are on the order of ∼1W m-2. Spin-up/-down effects as revealed from inconsistencies between analyses and forecasts are generally smaller and temporally less variable in ERA5 compared to ERA-Interim. Evaluation of the moisture budget shows that the ocean-to-land moisture transport and parameterized freshwater fluxes agree well in ERA5, while there are large inconsistencies in ERA-Interim. Overall, the quality of the budgets derived from ERA5 is demonstrably better than estimates from ERA-Interim. Still some particularly sensitive budget quantities (e.g., precipitation, evaporation, and ocean-land energy transport) show apparent inhomogeneities, especially in the late 1990s, which warrant further investigation and need to be considered in studies of interannual variability and trends.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


2021 ◽  
Vol 34 (2) ◽  
pp. 643-657
Author(s):  
Samar Minallah ◽  
Allison L. Steiner

AbstractPrecipitation in the Great Lakes region has a distinct seasonal cycle that peaks in early summer, followed by a decline in August and a secondary peak in September. This seasonality is often not captured by models, which necessitates understanding of the driving mechanisms to ascertain the model biases. This study analyzes the atmospheric moisture budget using reanalysis datasets to assess the role of regional evapotranspiration and moisture influx from remote origins in defining the precipitation seasonality, and to understand how the Great Lakes modulate spatial patterns and magnitudes of these components. Specifically, the land–water thermal contrast yields large seasonal variations in the evaporative fluxes and creates distinctive localized spatial patterns of moisture flux divergence. We find considerable month-to-month variations in both evapotranspiration and the net moisture transport through the boundaries, where they play a cooperative (contrasting) role in amplifying (dampening) the moisture content available for precipitation and total precipitable water. Our seasonal analysis suggests that the misrepresentation of the budget quantities in models, for example, in simulation of moisture transport processes and parameterization schemes, can result in an anomalous precipitation behavior and, in some cases, violation of the atmospheric moisture mass balance, resulting in large residual magnitudes. We also identify conspicuous differences in the representation of moisture budget components in the various reanalyses, which can alter their representation of the regional hydroclimates.


2020 ◽  
Vol 33 (19) ◽  
pp. 8457-8474
Author(s):  
Benoît Vannière ◽  
Malcolm Roberts ◽  
Pier Luigi Vidale ◽  
Kevin Hodges ◽  
Marie-Estelle Demory ◽  
...  

AbstractPrevious studies have shown that the number, intensity, and structure of simulated tropical cyclones (TCs) in climate models get closer to the observations as the horizontal resolution is increased. However, the sensitivity of tropical cyclone precipitation and moisture budget to changes in resolution has received less attention. In this study, we use the five-model ensemble from project PRIMAVERA/HighResMIP to investigate the systematic changes of the water budget of tropical cyclones in a range of horizontal resolutions from 1° to 0.25°. Our results show that, despite a large change in the distribution of TC intensity with resolution, the distribution of precipitation per TC (i.e., averaged in a 5° radial cap) does not change significantly. This result is explained by the fact that low- and high-resolution models represent equally well the large-scale balance that characterizes the moisture budget of TCs, with the radius of the moisture source extending to ~15° from the center of the TC (i.e. well beyond the TC edge). The wind profile is found to converge in the low and high resolutions for radii > 5°, resulting in a moisture flux convergence into the TC of similar magnitude at low and high resolutions. In contrast to precipitation per TC, TC intensity does increase at higher resolution and this is explained by the larger surface latent heat flux near the center of the storm, which leads to an increase in equivalent potential temperature and warmer core anomalies, although this extra latent heat represents a negligible contribution to the overall moisture budget. We discuss the complication arising from the choice of the tracking algorithm when assessing the impact of model resolution.


Sign in / Sign up

Export Citation Format

Share Document