Regional climate of the Subtropical Central Andes using high-resolution CMIP5 models. Part II: future projections for the twenty-first century

2017 ◽  
Vol 51 (7-8) ◽  
pp. 2913-2925 ◽  
Author(s):  
Natalia Zazulie ◽  
Matilde Rusticucci ◽  
Graciela B. Raga
2020 ◽  
Vol 33 (14) ◽  
pp. 6205-6228
Author(s):  
Emma Howard ◽  
Richard Washington

AbstractIn southern Africa, models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) predict robust future drying associated with a delayed rainy-season onset in the austral spring and a range of wetting and drying patterns in the austral summer. This paper relates these rainfall changes to dynamical shifts in two classes of weather systems: the Congo Air Boundary (CAB) and tropical lows. Objective algorithms are used to track these features in CMIP5 model output. It is then established that the climatological locations and frequencies of these systems are reasonably well represented in the CMIP5 models. RCP8.5 end-of-twenty-first-century projections are compared with historical end-of-twentieth-century simulations. Future projections in tropical-low locations and frequencies diverge, but indicate an overall average decrease of 15% and in some cases a northward shift. The projected spatial change in the tropical-low frequency distribution is weakly positively correlated to the projected spatial change in the austral summer rainfall distribution. Meanwhile, future projections indicate a 13% increase in CAB frequency from October to December. This is associated with the gradual climatological CAB breakdown occurring half a month later on average in end-of-twenty-first-century RCP8.5 projections. A delay in the gradual seasonal decline of the CAB prevents rainfall to the south of the CAB’s mean position, most of which is shown to occur on CAB breakdown days, hence creating the austral spring drying signal and delayed wet-season onset. Intermodel variability in the magnitude of CAB frequency increase is able to explain intermodel variability in the projected drying.


2020 ◽  
Author(s):  
Emma Howard ◽  
Richard Washington

In southern Africa, models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) predict robust future drying associated with a delayed rainy-season onset in the austral spring and a range of wetting and drying patterns in the austral summer. This paper relates these rainfall changes to dynamical shifts in two classes of weather systems: the Congo Air Boundary (CAB) and tropical lows. Objective algorithms are used to track these features in CMIP5 model output. It is then established that the climatological locations and frequencies of these systems are reasonably well represented in the CMIP5 models. RCP8.5 end-of-twenty-first-century projections are compared with historical end-of-twentieth-century simulations. Future projections in tropical-low locations and frequencies diverge, but indicate an overall average decrease of 15% and in some cases a northward shift. The projected spatial change in the tropical-low frequency distribution is weakly positively correlated to the projected spatial change in the austral summer rainfall distribution. Meanwhile, future projections indicate a 13% increase in CAB frequency from October to December. This is associated with the gradual climatological CAB breakdown occurring half a month later on average in end-of-twenty-first-century RCP8.5 projections. A delay in the gradual seasonal decline of the CAB prevents rainfall to the south of the CAB’s mean position, most of which is shown to occur on CAB breakdown days, hence creating the austral spring drying signal and delayed wet-season onset. Intermodel variability in the magnitude of CAB frequency increase is able to explain intermodel variability in the projected drying.


2018 ◽  
Vol 31 (13) ◽  
pp. 5243-5261 ◽  
Author(s):  
Kaitlin A. Naughten ◽  
Katrin J. Meissner ◽  
Benjamin K. Galton-Fenzi ◽  
Matthew H. England ◽  
Ralph Timmermann ◽  
...  

Basal melting of Antarctic ice shelves is expected to increase during the twenty-first century as the ocean warms, which will have consequences for ice sheet stability and global sea level rise. Here we present future projections of Antarctic ice shelf melting using the Finite Element Sea Ice/Ice-Shelf Ocean Model (FESOM) forced with atmospheric output from models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). CMIP5 models are chosen based on their agreement with historical atmospheric reanalyses over the Southern Ocean; the best-performing models are ACCESS 1.0 and the CMIP5 multimodel mean. Their output is bias-corrected for the representative concentration pathway (RCP) 4.5 and 8.5 scenarios. During the twenty-first-century simulations, total ice shelf basal mass loss increases by between 41% and 129%. Every sector of Antarctica shows increased basal melting in every scenario, with the largest increases occurring in the Amundsen Sea. The main mechanism driving this melting is an increase in warm Circumpolar Deep Water on the Antarctic continental shelf. A reduction in wintertime sea ice formation simulated during the twenty-first century stratifies the water column, allowing a warm bottom layer to develop and intrude into ice shelf cavities. This effect may be overestimated in the Amundsen Sea because of a cold bias in the present-day simulation. Other consequences of weakened sea ice formation include freshening of High Salinity Shelf Water and warming of Antarctic Bottom Water. Furthermore, freshening around the Antarctic coast in our simulations causes the Antarctic Circumpolar Current to weaken and the Antarctic Coastal Current to strengthen.


2015 ◽  
Vol 64 (2) ◽  
pp. 123-140 ◽  
Author(s):  
P Zanis ◽  
E Katragkou ◽  
C Ntogras ◽  
G Marougianni ◽  
A Tsikerdekis ◽  
...  

Author(s):  
Hyun Min Sung ◽  
Jisun Kim ◽  
Sungbo Shim ◽  
Jeong-byn Seo ◽  
Sang-Hoon Kwon ◽  
...  

AbstractThe National Institute of Meteorological Sciences-Korea Meteorological Administration (NIMS-KMA) has participated in the Coupled Model Inter-comparison Project (CMIP) and provided long-term simulations using the coupled climate model. The NIMS-KMA produces new future projections using the ensemble mean of KMA Advanced Community Earth system model (K-ACE) and UK Earth System Model version1 (UKESM1) simulations to provide scientific information of future climate changes. In this study, we analyze four experiments those conducted following the new shared socioeconomic pathway (SSP) based scenarios to examine projected climate change in the twenty-first century. Present day (PD) simulations show high performance skill in both climate mean and variability, which provide a reliability of the climate models and reduces the uncertainty in response to future forcing. In future projections, global temperature increases from 1.92 °C to 5.20 °C relative to the PD level (1995–2014). Global mean precipitation increases from 5.1% to 10.1% and sea ice extent decreases from 19% to 62% in the Arctic and from 18% to 54% in the Antarctic. In addition, climate changes are accelerating toward the late twenty-first century. Our CMIP6 simulations are released to the public through the Earth System Grid Federation (ESGF) international data sharing portal and are used to support the establishment of the national adaptation plan for climate change in South Korea.


Author(s):  
David Francisco Bustos Usta ◽  
Maryam Teymouri ◽  
Uday Chatterjee ◽  
Bappaditya Koley

2021 ◽  
pp. 1-48
Author(s):  
Renzhi Jing ◽  
Ning Lin ◽  
Kerry Emanuel ◽  
Gabriel Vecchi ◽  
Thomas R. Knutson

AbstractIn this study, we investigate the response of tropical cyclones (TCs) to climate change by using the Princeton environment-dependent probabilistic tropical cyclone (PepC) model and a statistical-deterministic method to downscale TCs using environmental conditions obtained from the Geophysical Fluid Dynamics Laboratory (GFDL) High-resolution Forecast-oriented Low Ocean Resolution (HiFLOR) model, under the Representative Concentration Pathway 4.5 (RCP4.5) emissions scenario for the North Atlantic basin. The downscaled TCs for the historical climate (1986-2005) are compared with those in the mid- (2016-35) and late-twenty-first century (2081-2100). The downscaled TCs are also compared with TCs explicitly simulated in HiFLOR. We show that while significantly more storms are detected in HiFLOR towards the end of the twenty-first century, the statistical-deterministic model projects a moderate increase in TC frequency, and PepC projects almost no increase in TC frequency. The changes in storm frequency in all three datasets are not significant in the mid-twenty-first century. All three project that storms will become more intense and the fraction of major hurricanes and Category 5 storms will significantly increase in the future climates. However, HiFLOR projects the largest increase in intensity while PepC projects the least. The results indicate that HiFLOR’s TC projection is more sensitive to climate change effects and statistical models are less sensitive. Nevertheless, in all three datasets, storm intensification and frequency increase lead to relatively small changes in TC threat as measured by the return level of landfall intensity.


Sign in / Sign up

Export Citation Format

Share Document