CO2-induced heat source changes over the Tibetan Plateau in boreal summer-Part I: the total effects of increased CO2

2020 ◽  
Vol 55 (7-8) ◽  
pp. 1793-1807 ◽  
Author(s):  
Xia Qu ◽  
Gang Huang ◽  
Lihua Zhu
2021 ◽  
Author(s):  
Qingquan Li ◽  
Mengchu Zhao ◽  
Song Yang ◽  
Xinyong Shen ◽  
Lili Dong ◽  
...  

AbstractThe thermal effect of the Tibetan Plateau (TP) on the northern hemisphere climate has long been a hot topic of scientific research. However, the global effects of the TP heat source are still unclear. We investigate the teleconnection patterns coincident with the TP heat source in boreal summer using both observational data and numerical models including a linearized baroclinic model and an atmospheric general circulation model. The western TP shows the most intense variability in atmospheric heating and the most active connection to atmospheric circulations. The surface sensible heating component of the western TP heat source is associated with a high-latitude wave train propagating from North Japan to central North America through the Bering Sea and Canada. The radiative heating component is accompanied by a wavenumber-4 wave train over Eurasia. We focus on the global zonally-oriented pattern that is connected with the latent heat release from the western TP, referred to here as the TP–circumglobal teleconnection (TP-CGT). The TP-CGT pattern is triggered by the western TP latent heating in two parts starting from the TP: an eastward-propagating wave train trapped in the westerly jet stream and a westward Rossby wave response. The TP-CGT accounts for above 18% of the total variance of the circumglobal teleconnection pattern and modulates mid-latitude precipitation by superimposition. The western TP is the key region in which diabatic heating can initiate the two atmospheric responses concurrently, and the heating over northeastern Asia or the Indian Peninsula is unable to induce the circumglobal pattern directly. The unique geographical location and strong tropospheric heating also make the western TP as a “transit area” of transferring the indirect impact of the Indian summer monsoon (ISM) to the TP-CGT. These results enhance our understanding of the relationship between the circumglobal teleconnection and the ISM and is helpful for improving the prediction of the circumglobal teleconnection variability.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1631
Author(s):  
Fan ◽  
Pang ◽  
Liao ◽  
Tian ◽  
Hao ◽  
...  

The Ganzi geothermal field, located in the eastern sector of the Himalayan geothermal belt, is full of high-temperature surface manifestations. However, the geothermal potential has not been assessed so far. The hydrochemical and gas isotopic characteristics have been investigated in this study to determine the geochemical processes involved in the formation of the geothermal water. On the basis of δ18O and δD values, the geothermal waters originate from snow and glacier melt water. The water chemistry type is dominated by HCO3-Na, which is mainly derived from water-CO2-silicate interactions, as also indicated by the 87Sr/86Sr ratios (0.714098–0.716888). Based on Cl-enthalpy mixing model, the chloride concentration of the deep geothermal fluid is 37 mg/L, which is lower than that of the existing magmatic heat source area. The estimated reservoir temperature ranges from 180–210 °C. Carbon isotope data demonstrate that the CO2 mainly originates from marine limestone metamorphism, with a fraction of 74–86%. The helium isotope ratio is 0.17–0.39 Ra, indicating that the He mainly comes from atmospheric and crustal sources, and no more than 5% comes from a mantle source. According to this evidence, we propose that there is no magmatic heat source below the Ganzi geothermal field, making it a distinctive type of high-temperature geothermal system on the Tibetan Plateau.


2010 ◽  
Vol 36 (5-6) ◽  
pp. 1207-1219 ◽  
Author(s):  
Zhiyan Zuo ◽  
Renhe Zhang ◽  
Ping Zhao

2013 ◽  
Vol 14 (4) ◽  
pp. 227-234 ◽  
Author(s):  
Xiangde Xu ◽  
Chungu Lu ◽  
Yihui Ding ◽  
Xiaohui Shi ◽  
Yudi Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document