circumglobal teleconnection
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Qingquan Li ◽  
Mengchu Zhao ◽  
Song Yang ◽  
Xinyong Shen ◽  
Lili Dong ◽  
...  

AbstractThe thermal effect of the Tibetan Plateau (TP) on the northern hemisphere climate has long been a hot topic of scientific research. However, the global effects of the TP heat source are still unclear. We investigate the teleconnection patterns coincident with the TP heat source in boreal summer using both observational data and numerical models including a linearized baroclinic model and an atmospheric general circulation model. The western TP shows the most intense variability in atmospheric heating and the most active connection to atmospheric circulations. The surface sensible heating component of the western TP heat source is associated with a high-latitude wave train propagating from North Japan to central North America through the Bering Sea and Canada. The radiative heating component is accompanied by a wavenumber-4 wave train over Eurasia. We focus on the global zonally-oriented pattern that is connected with the latent heat release from the western TP, referred to here as the TP–circumglobal teleconnection (TP-CGT). The TP-CGT pattern is triggered by the western TP latent heating in two parts starting from the TP: an eastward-propagating wave train trapped in the westerly jet stream and a westward Rossby wave response. The TP-CGT accounts for above 18% of the total variance of the circumglobal teleconnection pattern and modulates mid-latitude precipitation by superimposition. The western TP is the key region in which diabatic heating can initiate the two atmospheric responses concurrently, and the heating over northeastern Asia or the Indian Peninsula is unable to induce the circumglobal pattern directly. The unique geographical location and strong tropospheric heating also make the western TP as a “transit area” of transferring the indirect impact of the Indian summer monsoon (ISM) to the TP-CGT. These results enhance our understanding of the relationship between the circumglobal teleconnection and the ISM and is helpful for improving the prediction of the circumglobal teleconnection variability.



2021 ◽  
Author(s):  
Jonathan D. Beverley ◽  
Steven J. Woolnough ◽  
Laura H. Baker ◽  
Stephanie J. Johnson ◽  
Antje Weisheimer ◽  
...  

AbstractThe circumglobal teleconnection (CGT) is an important mode of circulation variability, with an influence across many parts of the northern hemisphere. Here, we examine the excitation mechanisms of the CGT in the ECMWF seasonal forecast model, and the relationship between the Indian summer monsoon (ISM), the CGT and the extratropical northern hemisphere circulation. Results from relaxation experiments, in which the model is corrected to reanalysis in specific regions, suggest that errors over northwest Europe are more important in inhibiting the model skill at representing the CGT, in addition to northern hemisphere skill more widely, than west-central Asia and the ISM region, although the link between ISM precipitation and the extratropical circulation is weak in all experiments. Thermal forcing experiments in the ECMWF model, in which a heating is applied over India, suggest that the ISM does force an extratropical Rossby wave train, with upper tropospheric anticyclonic anomalies over east Asia, the North Pacific and North America associated with increased ISM heating. However, this eastward-propagating branch of the wave train does not project into Europe, and the response there occurs largely through westward-propagating Rossby waves. Results from barotropic model experiments show a response that is highly consistent with the seasonal forecast model, with similar eastward- and westward-propagating Rossby waves. This westward-propagating response is shown to be important in the downstream reinforcement of the wave train between Asia and North America.



2021 ◽  
Author(s):  
Tomoe Nakanishi ◽  
Yoshihiro Tachibana ◽  
Yuta Ando

AbstractThe Sahel region, located between the tropical rainforests of Africa and the Sahara Desert, has rainfall that varies widely from year to year, associated with extremely deep convection. This deep convection, strongly heated by water vapor condensation, suggests the possibility of exerting a remote influence on mid- and high-latitude climate similar to the well-known influences of tropical oceanic convection on global climate. Here we investigate the possibility that deep convection over the Sahel initiates a semi-circumglobal teleconnection extending to eastern Eurasia. Statistical analysis and numerical experiments support the possible existence of this teleconnection at an interannual time scale. We propose that the anomalous heat source due to deep convection over the Sahel in the late monsoon season influences meandering of the mid-latitude jet stream over Europe through the combination of a Matsuno-Gill response and advection of absolute vorticity. This subtropical jet meander may in turn drive an eastward propagation of a Rossby wave across Eurasia as far as East Asia. Because deep convection over other subtropical land areas may exert a similar remote influence upon extratropical extreme weather, further studies of the influence of overland convection may provide us with an expanded comprehension of teleconnections.



2021 ◽  
Author(s):  
Nicholas Soulard ◽  
Hai Lin ◽  
Jacques Derome ◽  
Bin Yu


2020 ◽  
Author(s):  
Paul-Arthur Monerie ◽  
Jon Robson ◽  
Buwen Dong ◽  
Dan Hodson

Abstract We assess the effects of the North Atlantic Ocean Sea Surface Temperature (NASST) on North East Asian (NEA) surface temperature. We use a set of sensitivity experiments, performed with MetUM-GOML2, an atmospheric general circulation model coupled to a multi-level ocean mixed layer model, to mimic warming and cooling over the North Atlantic Ocean. Results show that a warming of the NASST is associated with a significant warming over NEA. Two mechanisms are pointed out to explain the NASST—North East Asia surface temperature relationship. First, the warming of the NASST is associated with a modulation of the northern hemisphere circulation, due to the propagation of a Rossby wave (i.e. the circumglobal teleconnection). The change in the atmosphere circulation is associated with advections of heat from the Pacific Ocean to NEA and with an increase in net surface shortwave radiation over NEA, both acting to increase NEA surface temperature. Second, the warming of the NASST is associated with a cooling (warming) over the eastern (western) Pacific Ocean, which modulates the circulation over the western Pacific Ocean and NEA. Additional simulations, in which Pacific Ocean sea surface temperatures are kept constant, show that the modulation of the circumglobal teleconnection is key to explaining impacts of the NASST on NEA surface temperature.



2020 ◽  
Vol 33 (12) ◽  
pp. 5213-5221
Author(s):  
Fuli Zhou ◽  
Renhe Zhang ◽  
Jinping Han

AbstractIn this study, the relationship between circumglobal teleconnection (CGT) and East Asian summer monsoon rainfall was analyzed by data diagnoses and numerical experiments. It is found that the CGT has high spatial and temporal similarities with the teleconnection pattern incurred by the variation of the South Asian high (SAH), which is collaboratively influenced by both Indian and East Asian summer monsoon rainfall. These two teleconnections have similar spatial distributions, and their indices are strongly correlated in temporal variations. Using the partial correlation method, it is revealed that SAH plays a significant role on the propagation of CGT, especially to the east of 90°E. The numerical experiments indicate that the latent heat release from East Asian summer monsoon rainfall stimulates an upper-tropospheric teleconnection, which shows the same spatial structure with CGT. This study demonstrates that the generation of CGT is not only associated with the Indian summer monsoon rainfall, but also closely with the East Asian summer monsoon rainfall. The CGT is maintained by the latent heat released from the rainfall of both monsoons.



2020 ◽  
Vol 11 (1) ◽  
pp. 17-34 ◽  
Author(s):  
Giorgia Di Capua ◽  
Marlene Kretschmer ◽  
Reik V. Donner ◽  
Bart van den Hurk ◽  
Ramesh Vellore ◽  
...  

Abstract. The alternation of active and break phases in Indian summer monsoon (ISM) rainfall at intraseasonal timescales characterizes each ISM season. Both tropical and mid-latitude drivers influence this intraseasonal ISM variability. The circumglobal teleconnection observed in boreal summer drives intraseasonal variability across the mid-latitudes, and a two-way interaction between the ISM and the circumglobal teleconnection pattern has been hypothesized. We use causal discovery algorithms to test the ISM circumglobal teleconnection hypothesis in a causal framework. A robust causal link from the circumglobal teleconnection pattern and the North Atlantic region to ISM rainfall is identified, and we estimate the normalized causal effect (CE) of this link to be about 0.2 (a 1 standard deviation shift in the circumglobal teleconnection causes a 0.2 standard deviation shift in the ISM rainfall 1 week later). The ISM rainfall feeds back on the circumglobal teleconnection pattern, however weakly. Moreover, we identify a negative feedback between strong updraft located over India and the Bay of Bengal and the ISM rainfall acting at a biweekly timescale, with enhanced ISM rainfall following strong updraft by 1 week. This mechanism is possibly related to the boreal summer intraseasonal oscillation. The updraft has the strongest CE of 0.5, while the Madden–Julian oscillation variability has a CE of 0.2–0.3. Our results show that most of the ISM variability on weekly timescales comes from these tropical drivers, though the mid-latitude teleconnection also exerts a substantial influence. Identifying these local and remote drivers paves the way for improved subseasonal forecasts.



2019 ◽  
Author(s):  
Giorgia Di Capua ◽  
Marlene Kretschmer ◽  
Reik V. Donner ◽  
Bart van den Hurk ◽  
Ramesh Vellore ◽  
...  

Abstract. The alternation of active and break phases in the Indian summer monsoon (ISM) rainfall at sub-seasonal timescales characterizes each ISM season. Tropical and mid-latitude drivers influence this sub-seasonal ISM variability. The circumglobal teleconnection observed in boreal summer drives sub-seasonal variability across the mid-latitudes and a two-way interaction between ISM and the circumglobal teleconnection pattern has been hypothesized. We use causal discovery algorithms to test the ISM-circumglobal teleconnection hypothesis in a causal framework. Our analysis shows a robust causal link from the circumglobal teleconnection pattern and the North Atlantic region to ISM rainfall. We estimate the normalized causal effect (CE) of this link to be about 0.2 (a one standard deviation shift in the circumglobal teleconnection causes a 0.2 standard deviation shift in the ISM rainfall one week later). In turn, the ISM rainfall influences back the circumglobal teleconnection pattern, however weakly. Moreover, we identify causal links that represent the internal dynamics of the ISM convective cell at weekly timescales: Periods with strong updraft lead to strong rainfall one week later, but the resulting increase in static stability suppresses convection again. In our analyses, this internal ISM dynamics has the strongest CE of 0.5. Tropical Madden-Julian Oscillation variability has a CE of 0.2–0.3. Our results show that the most of the ISM variability on weekly timescales is due to internal dynamics of convective cell, but both tropical and mid-latitude teleconnections have a substantial influence. Identifying these local and remote drivers paves the way for improved sub-seasonal forecasts.



2019 ◽  
Author(s):  
Giorgia Di Capua ◽  
Marlene Kretschmer ◽  
Reik V. Donner ◽  
Bart van den Hurk ◽  
Ramesh Vellore ◽  
...  

Abstract. The Indian Summer Monsoon (ISM) is characterized by alternating active (wet) and break (dry) phases operating at sub-seasonal timescales, and various studies advocate tropical and mid-latitude teleconnection drivers influence the sub-seasonal ISM rainfall variability. One such driver is the circumglobal teleconnection pattern, which is commonly observed during boreal summer regulating the variability across the mid-latitudes at sub-seasonal time scales. In this study, a two-way interaction between ISM and circumglobal teleconnection is hypothesized and causal discovery algorithms are employed to examine and quantify the interaction linkage. Our analysis shows that there is a robust causal link from the circumglobal teleconnection pattern and the North Atlantic Oscillation (NAO) to ISM rainfall, and also a reverse causal link from the ISM rainfall to the circumglobal teleconnection pattern. Further, by including regional drivers in the framework, we identify the causal links that represent the internal dynamics associated with the ISM convective activity operating on weekly timescales, e.g., on weekly time scales, there is precedence of enhanced ascent to increased rainfall over the monsoon trough region which is followed by strong stabilization and convective inhibition. In our analyses, this internal ISM dynamics has the strongest effect, which is about twice as large as those of the mid-latitudes and of tropical MJO variability on the ISM dynamics. With our theory-guided causal effect network approach, we can (1) test physical hypotheses, (2) exploratively search for causal links and (3) quantify their relative causal contributions. This paves the way for improved (sub)seasonal forecasts.



2019 ◽  
Vol 64 (6) ◽  
pp. 374-376 ◽  
Author(s):  
Fuli Zhou ◽  
Renhe Zhang ◽  
Jinping Han


Sign in / Sign up

Export Citation Format

Share Document