scholarly journals How well does the HadGEM2-ES coupled model represent the Southern Hemisphere storm tracks?

2021 ◽  
Author(s):  
Philipp Edson Dias da Silva ◽  
Kevin Ivan Hodges ◽  
Mariane Mendes Coutinho
2012 ◽  
Vol 5 (5) ◽  
pp. 1161-1175 ◽  
Author(s):  
H. Kurzke ◽  
M. V. Kurgansky ◽  
K. Dethloff ◽  
D. Handorf ◽  
S. Erxleben ◽  
...  

Abstract. A quasi-geostrophic model of Southern Hemisphere's wintertime atmospheric circulation with horizontal resolution T21 has been coupled to a global ocean circulation model with a resolution of 2° × 2° and simplified physics. This simplified coupled model reproduces qualitatively some features of the first and the second EOF of atmospheric 833 hPa geopotential height in accordance with NCEP data. The variability patterns of the simplified coupled model have been compared with variability patterns simulated by four complex state-of-the-art coupled CMIP5 models. The first EOF of the simplified model is too zonal and does not reproduce the right position of the centre of action over the Pacific Ocean and its extension to the tropics. The agreement in the second EOF between the simplified and the CMIP5 models is better. The total variance of the simplified model is weaker than the observational variance and those of the CMIP5 models. The transport properties of the Southern Ocean circulation are in qualitative accord with observations. The simplified model exhibits skill in reproducing essential features of decadal and multi-decadal climate variability in the extratropical Southern Hemisphere. Notably, 800 yr long coupled model simulations reveal sea surface temperature fluctuations on the timescale of several decades in the Antarctic Circumpolar Current region.


2010 ◽  
Vol 23 (2) ◽  
pp. 440-454 ◽  
Author(s):  
Kevin E. Trenberth ◽  
John T. Fasullo

Abstract The energy budget of the modern-day Southern Hemisphere is poorly simulated in both state-of-the-art reanalyses and coupled global climate models. The ocean-dominated Southern Hemisphere has low surface reflectivity and therefore its albedo is particularly sensitive to cloud cover. In modern-day climates, mainly because of systematic deficiencies in cloud and albedo at mid- and high latitudes, too much solar radiation enters the ocean. Along with too little radiation absorbed at lower latitudes because of clouds that are too bright, unrealistically weak poleward transports of energy by both the ocean and atmosphere are generally simulated in the Southern Hemisphere. This implies too little baroclinic eddy development and deficient activity in storm tracks. However, projections into the future by coupled climate models indicate that the Southern Ocean features a robust and unique increase in albedo, related to clouds, in association with an intensification and poleward shift in storm tracks that is not observed at any other latitude. Such an increase in cloud may be untenable in nature, as it is likely precluded by the present-day ubiquitous cloud cover that models fail to capture. There is also a remarkably strong relationship between the projected changes in clouds and the simulated current-day cloud errors. The model equilibrium climate sensitivity is also significantly negatively correlated with the Southern Hemisphere energy errors, and only the more sensitive models are in the range of observations. As a result, questions loom large about how the Southern Hemisphere will actually change as global warming progresses, and a better simulation of the modern-day climate is an essential first step.


2013 ◽  
Vol 26 (24) ◽  
pp. 9860-9879 ◽  
Author(s):  
Fei Zheng ◽  
Jianping Li ◽  
Robin T. Clark ◽  
Hyacinth C. Nnamchi

Abstract Climate variability in the Southern Hemisphere (SH) extratropical regions is dominated by the SH annular mode (SAM). Future changes in the SAM could have a large influence on the climate over broad regions. In this paper, the authors utilized model simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to examine projected future changes in the SAM during the austral summer [December–February (DJF)]. To start off, first, the ability of the models in reproducing the recently observed spatial and temporal variability was assessed. The 12 CMIP5 models examined were found to reproduce the SAM's spatial pattern reasonably well in terms of both the symmetrical and the asymmetric component. The CMIP5 models show an improvement over phase 3 of CMIP (CMIP3) in simulating the seesaw structure of the SAM and also give improvements in the recently observed positive SAM trend. However, only half the models appeared to be able to capture two major recent decadal SAM phases. Then, the future SAM trends and its sensitivity to greenhouse gas (GHG) concentrations using simulations based on the representative concentration pathways 4.5 (RCP4.5) and 8.5 (RCP8.5) were explored. With RCP4.5, a very weak negative trend for this century is found. Conversely, with RCP8.5, a significant positive trend was projected, with a magnitude similar to the recently observed trend. Finally, model uncertainty in the future SAM projections was quantified by comparing projections from the individual CMIP5 models. The results imply the response of SH polar region stratospheric temperature to GHGs could be a significant controlling factor on the future evolution of the SAM.


2013 ◽  
Vol 26 (1) ◽  
pp. 246-260 ◽  
Author(s):  
Edmund K. M. Chang ◽  
Yanjuan Guo ◽  
Xiaoming Xia ◽  
Minghua Zheng

Abstract The climatological storm-track activity simulated by 17 Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4)/phase 3 of the Coupled Model Intercomparison Project (CMIP3) models is compared to that in the interim ECMWF Re-Analysis (ERA-Interim). Nearly half of the models show significant biases in storm-track amplitude: four models simulate storm tracks that are either significantly (>20%) too strong or too weak in both hemispheres, while four other models have interhemispheric storm-track ratios that are biased by over 10%. Consistent with previous studies, storm-track amplitude is found to be negatively correlated with grid spacing. The interhemispheric ratio of storm-track activity is highly correlated with the interhemispheric ratio of mean available potential energy, and this ratio is biased in some model simulations due to biases in the midlatitude temperature gradients. In terms of geographical pattern, the storm tracks in most CMIP3 models exhibit an equatorward bias in both hemispheres. For the seasonal cycle, most models can capture the equatorward migration and strengthening of the storm tracks during the cool season, but some models exhibit biases in the amplitude of the seasonal cycle. Possible implications of model biases in storm-track climatology have been investigated. For both hemispheres, models with weak storm tracks tend to have larger percentage changes in storm-track amplitudes over the seasonal cycle. Under global warming, for the NH, models with weak storm tracks tend to project larger percentage changes in storm-track amplitude whereas, for the SH, models with large equatorward biases in storm-track latitude tend to project larger poleward shifts. Preliminary results suggest that CMIP5 model projections also share these behaviors.


2009 ◽  
Vol 36 (22) ◽  
Author(s):  
Yanjuan Guo ◽  
Edmund K. M. Chang ◽  
Stephen S. Leroy

Sign in / Sign up

Export Citation Format

Share Document