scholarly journals Investigation of future climate change over the British Isles using weather patterns

2021 ◽  
Author(s):  
James O. Pope ◽  
Kate Brown ◽  
Fai Fung ◽  
Helen M. Hanlon ◽  
Robert Neal ◽  
...  

AbstractFor those involved in planning for regional and local scale changes in future climate, there is a requirement for climate information to be available in a context more usually associated with meteorological timescales. Here we combine a tool used in numerical weather prediction, the 30 weather patterns produced by the Met Office, which are already applied operationally to numerical weather prediction models, to assess changes in the UK Climate Projections (UKCP) Global ensemble. Through assessing projected changes in the frequency of the weather patterns at the end of the 21st Century, we determine that future changes in large-scale circulation tend towards an increase in winter of weather patterns associated with cyclonic and westerly wind conditions at the expense of more anticyclonic, settled/blocked weather patterns. In summer, the results indicate a shift towards an increase in dry settled weather types with a corresponding reduction in the wet and windy weather types. Climatologically this suggests a shift towards warmer, wetter winters and warmer, drier summers; which is consistent with the headline findings from the UK Climate Projections 2018. This paper represents the first evaluation of weather patterns analysis within UKCP Global. It provides a detailed assessment of the changes in these weather patterns through the 21st Century and how uncertainty in emissions, structural and perturbed parameters affects these results. We show that the use of these weather patterns in tandem with the UKCP projections is useful for future work investigating changes in a range of weather-related climate features such as extreme precipitation.

Weather ◽  
2016 ◽  
Vol 71 (7) ◽  
pp. 162-162 ◽  
Author(s):  
Gordon Inverarity ◽  
Stephen Moseley

2021 ◽  
Vol 78 (5) ◽  
pp. 1465-1485
Author(s):  
Julian F. Quinting ◽  
Christian M. Grams

AbstractThe physical and dynamical processes associated with warm conveyor belts (WCBs) importantly affect midlatitude dynamics and are sources of forecast uncertainty. Moreover, WCBs modulate the large-scale extratropical circulation and can communicate and amplify forecast errors. Therefore, it is desirable to assess the representation of WCBs in numerical weather prediction (NWP) models in particular on the medium to subseasonal forecast range. Most often, WCBs are identified as coherent bundles of Lagrangian trajectories that ascend in a time interval of 2 days from the lower to the upper troposphere. Although this Lagrangian approach has advanced the understanding of the involved processes significantly, the calculation of trajectories is computationally expensive and requires NWP data at a high spatial [], vertical [], and temporal resolution []. In this study, we present a statistical framework that derives footprints of WCBs from coarser NWP data that are routinely available. To this end, gridpoint-specific multivariate logistic regression models are developed for the Northern Hemisphere using meteorological parameters from ERA-Interim data as predictors and binary footprints of WCB inflow, ascent, and outflow based on a Lagrangian dataset as predictands. Stepwise forward selection identifies the most important predictors for these three WCB stages. The logistic models are reliable in replicating the climatological frequency of WCBs as well as the footprints of WCBs at instantaneous time steps. The novel framework is a first step toward a systematic evaluation of WCB representation in large datasets such as subseasonal ensemble reforecasts or climate projections.


Sign in / Sign up

Export Citation Format

Share Document