warm conveyor belts
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 17)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 21 (22) ◽  
pp. 17051-17078
Author(s):  
Samira Khodayar ◽  
Silvio Davolio ◽  
Paolo Di Girolamo ◽  
Cindy Lebeaupin Brossier ◽  
Emmanouil Flaounas ◽  
...  

Abstract. Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean (WMed). Every year, recurrent events affect the area with fatal consequences for infrastructure and personal losses. Despite this being a well-known issue widely investigated in the past, open questions still remain. Particularly, the understanding of the underlying mechanisms and the modeling representation of the events must be improved. One of the major goals of the Hydrological Cycle in the Mediterranean Experiment (HyMeX; 2010–2020) has been to advance knowledge on this topic. In this article, we present an overview of the most recent lessons learned from HyMeX towards an improved understanding of the mechanisms leading to HP in the WMed. The unique network of instruments deployed as well as the use of finer model resolutions and coupled models provided an unprecedented opportunity to validate numerical model simulations, develop improved parameterizations, and design high-resolution ensemble modeling approaches and sophisticated assimilation techniques across scales. All in all, HyMeX, and particularly the science team heavy precipitation, favored the evidencing of theoretical results, the enrichment of our knowledge on the genesis and evolution of convection in a complex topography environment, and the improvement of precipitation forecasts. Illustratively, the intervention of cyclones and warm conveyor belts in the occurrence of heavy precipitation has been pointed out, and the crucial role of the spatiotemporal distribution of atmospheric water vapor for the understanding and accurate forecast of the timing and location of deep convection has been evidenced, as has the complex interaction among processes across scales. The importance of soil and ocean conditions and the interactions among systems were highlighted, and such systems were specifically developed in the framework of HyMeX to improve the realism of weather forecasts. Furthermore, the benefits of cross-disciplinary efforts within HyMeX have been a key asset in bringing our knowledge about heavy precipitation in the Mediterranean region a step forward.


Author(s):  
Jan Wandel ◽  
Julian F. Quinting ◽  
Christian M. Grams

AbstractWarm conveyor belts (WCBs) associated with extratropical cyclones transport air from the lower troposphere into the tropopause region and contribute to upper-level ridge building and the formation of blocking anticyclones. Recent studies indicate that this constitutes an important source and magnifier of forecast uncertainty and errors in numerical weather prediction (NWP) models. However, a systematic evaluation of the representation of WCBs in NWP models has yet to be determined. Here, we employ the logistic regression models developed in Part I to identify the inflow, ascent, and outflow stages of WCBs in the European Centre for Medium-Range Weather Forecasts (ECMWF) sub-seasonal reforecasts for Northern Hemisphere winter in the period January 1997 to December 2017. We verify the representation of these WCB stages in terms of systematic occurrence frequency biases, forecast reliability, and forecast skill. Systematic WCB frequency biases emerge already at early lead times of around 3 days with an underestimation for the WCB outflow over the North Atlantic and eastern North Pacific of around 40% relative to climatology. Biases in the predictor variables of the logistic regression models can partially explain these biases in WCB inflow, ascent, or outflow. Despite an overconfidence in predicting high WCB probabilities, skillful WCB forecasts are on average possible up to a lead time of 8–10 days with more skill over the North Pacific compared to the North Atlantic region. Our results corroborate that the current limited forecast skill for the large-scale extratropical circulation on sub-seasonal time scales beyond 10 days might be tied to the representation of WCBs and associated upscale error growth.


2021 ◽  
Author(s):  
Lukas Bösiger ◽  
Michael Sprenger ◽  
Maxi Böttcher ◽  
Hanna Joos ◽  
Tobias Günther

Abstract. Jet streams are fast three-dimensional coherent air flows that interact with other atmospheric structures such as warm conveyor belts (WCBs) and the tropopause. Individually, these structures have a significant impact on the mid-latitude weather evolution, and the impact of their interaction is still subject of research in the atmospheric sciences. A first step towards a deeper understanding of the meteorological processes is to extract the geometry of jet streams, for which we develop an integration-based feature extraction algorithm. Thus, rather than characterizing jet coreline purely as extremal line structure of wind magnitude, our coreline definition includes a regularization to favor jet corelines that align with the wind vector field. Based on the line geometry, proximity-based filtering can automatically detect potential interactions between WCBs and jets, and results of an automatic detection of split and merge events of jets can be visualized in relation to the tropopause. Taking ERA5 reanalysis data as input, we first extract jet stream corelines using an integration-based predictor-corrector approach that admits momentarily weak air streams. Using WCB trajectories and the tropopause geometry as context, we visualize individual cases, showing how WCBs influence the acceleration and displacement of jet streams, and how the tropopause behaves near split and merge locations of jets. Multiple geographical projections, slicing, as well as direct and indirect volume rendering further support the interactive analysis. Using our tool, we obtained a new perspective onto the three-dimensional jet movement, which can stimulate follow-up research.


2021 ◽  
Vol 78 (5) ◽  
pp. 1465-1485
Author(s):  
Julian F. Quinting ◽  
Christian M. Grams

AbstractThe physical and dynamical processes associated with warm conveyor belts (WCBs) importantly affect midlatitude dynamics and are sources of forecast uncertainty. Moreover, WCBs modulate the large-scale extratropical circulation and can communicate and amplify forecast errors. Therefore, it is desirable to assess the representation of WCBs in numerical weather prediction (NWP) models in particular on the medium to subseasonal forecast range. Most often, WCBs are identified as coherent bundles of Lagrangian trajectories that ascend in a time interval of 2 days from the lower to the upper troposphere. Although this Lagrangian approach has advanced the understanding of the involved processes significantly, the calculation of trajectories is computationally expensive and requires NWP data at a high spatial [], vertical [], and temporal resolution []. In this study, we present a statistical framework that derives footprints of WCBs from coarser NWP data that are routinely available. To this end, gridpoint-specific multivariate logistic regression models are developed for the Northern Hemisphere using meteorological parameters from ERA-Interim data as predictors and binary footprints of WCB inflow, ascent, and outflow based on a Lagrangian dataset as predictands. Stepwise forward selection identifies the most important predictors for these three WCB stages. The logistic models are reliable in replicating the climatological frequency of WCBs as well as the footprints of WCBs at instantaneous time steps. The novel framework is a first step toward a systematic evaluation of WCB representation in large datasets such as subseasonal ensemble reforecasts or climate projections.


2021 ◽  
Author(s):  
Dominik Büeler ◽  
Jan Wandel ◽  
Julian F. Quinting ◽  
Christian M. Grams

<div><span>Sub-seasonal numerical weather forecasts (10 – 60 days) primarily aim to predict the evolution of the large-scale circulation and its associated surface weather on continent- and multi-daily scales. In the extratropics, this atmospheric variability is depicted best by so-called weather regimes. Here, we assess the ability of sub-seasonal reforecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) to predict 7 year-round weather regimes in the Atlantic-European region. We first investigate how well the forecasts reproduce frequency, length, and transitions of the weather regime life cycles. We then show that the average forecast skill horizon varies by several days for different weather regimes, seasons, and initial planetary-scale flow states. In a final part, we provide first insight into how synoptic-scale processes, more specifically warm conveyor belts, and their inherent intrinsic predictability limit might affect this flow-dependent sub-seasonal weather regime forecast skill.</span></div>


2021 ◽  
Vol 2 (1) ◽  
pp. 71-88
Author(s):  
Emmanouil Flaounas ◽  
Matthias Röthlisberger ◽  
Maxi Boettcher ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract. An extreme aggregation of precipitation on the seasonal timescale, leading to a so-called extreme wet season, can have substantial environmental and socio-economic impacts. This study has a twofold aim: first to identify and statistically characterize extreme wet seasons around the globe and second to elucidate their relationship with specific weather systems. Extreme wet seasons are defined independently at every grid point of ERA-Interim reanalyses as the consecutive 90 d period with the highest accumulated precipitation in the 40-year period of 1979–2018. In most continental regions, the extreme seasons occur during the warm months of the year, especially in the midlatitudes. Nevertheless, colder periods might be also relevant, especially in coastal areas. All identified extreme seasons are statistically characterized in terms of climatological anomalies of the number of wet days and of daily extreme events. Results show that daily extremes are decisive for the occurrence of extreme wet seasons in regions of frequent precipitation, e.g., in the tropics. This is in contrast to arid regions where wet seasons may occur only due to anomalously frequent wet days. In the subtropics and more precisely within the transitional zones between arid areas and regions of frequent precipitation, both an anomalously high occurrence of daily extremes and of wet days are related to the formation of extreme wet seasons. A novel method is introduced to define the spatial extent of regions affected by a particular extreme wet season and to relate extreme seasons to four objectively identified synoptic-scale weather systems, which are known to be associated with intense precipitation: cyclones, warm conveyor belts, tropical moisture exports and breaking Rossby waves. Cyclones and warm conveyor belts contribute particularly strongly to extreme wet seasons in most regions of the globe. But interlatitudinal influences are also shown to be important: tropical moisture exports, i.e., the poleward transport of tropical moisture, can contribute to extreme wet seasons in the midlatitudes, while breaking Rossby waves, i.e., the equatorward intrusion of stratospheric air, may decisively contribute to the formation of extreme wet seasons in the tropics. Three illustrative examples provide insight into the synergetic effects of the four identified weather systems on the formation of extreme wet seasons in the midlatitudes, the Arctic and the (sub)tropics.


2020 ◽  
Author(s):  
Maxi Boettcher ◽  
Andreas Schäfler ◽  
Michael Sprenger ◽  
Harald Sodemann ◽  
Stefan Kaufmann ◽  
...  

Abstract. Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation and the amplification of upper-level ridges. This study presents a case study that involves aircraft, lidar and radar observations in a WCB ascending from western Europe towards the Baltic Sea during the field experiments HyMeX and T-NAWDEX-Falcon in October 2012. Trajectories were used to link different observations along the WCB, that is to establish so-called Lagrangian matches between observations. To this aim, wind fields of the ECMWF ensemble data assimilation system were used, which allowed for a probabilistic quantification of the WCB occurrence and the Lagrangian matches. Despite severe air traffic limitations for performing research flights over Europe, the DLR Falcon successfully sampled WCB air masses during different phases of the WCB ascent. The WCB trajectories revealed measurements in two distinct WCB branches: one branch ascended from the eastern North Atlantic over southwestern France, while the other had its inflow in the western Mediterranean. Both branches passed across the Alps, and for both branches, Lagrangian matches coincidentally occurred between lidar water vapour measurements in the inflow of the WCB south of the Alps, radar measurements during the ascent at the Alps, and in situ aircraft measurements by Falcon in the WCB outflow north of the Alps. An airborne release experiment with an inert tracer could confirm the long pathway of the WCB from the inflow in the Mediterranean boundary layer to the outflow in the upper troposphere near the Baltic Sea several hours later. The comparison of observations and ensemble analyses reveals a moist bias in the analyses in parts of the WCB inflow but a good agreement of cloud water species in the WCB during ascent. In between these two observations, a precipitation radar measured strongly precipitating WCB air located directly above the melting layer while ascending at the southern slopes of the Alps. The trajectories illustrate the complexity of a continental and orographically influenced WCB, which leads to (i) WCB moisture sources from both the Atlantic and Mediterranean, (ii) different pathways of WCB ascent affected by orography, and (iii) locally steep WCB ascent with high radar reflectivity values that might result in enhanced precipitation where the WCB flows over the Alps. The linkage of observational data by ensemble-based WCB trajectory calculations and confirmed by an inert tracer, and the model evaluation using the multi-platform observations are the central elements of this study and reveal important aspects of orographically modified WCBs.


2020 ◽  
Vol 1 (2) ◽  
pp. 577-595
Author(s):  
Hanin Binder ◽  
Maxi Boettcher ◽  
Hanna Joos ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract. Warm conveyor belts (WCBs) are important cyclone-related airstreams that are responsible for most of the cloud and precipitation formation in the extratropics. They can also substantially influence the dynamics of cyclones and the upper-level flow. So far, most of the knowledge about WCBs is based on model data from analyses, reanalyses and forecast data with only a few observational studies available. The aim of this work is to gain a detailed observational perspective on the vertical cloud and precipitation structure of WCBs during their inflow, ascent and outflow and to evaluate their representation in the new ERA5 reanalysis dataset. To this end, satellite observations from the CloudSat radar and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar are combined with an ERA5-based WCB climatology for nine Northern Hemisphere winters. Based on a case study and a composite analysis, the main findings can be summarized as follows. (i) WCB air masses are part of deep, strongly precipitating clouds, with cloud-top heights at 9–10 km during their ascent and an about 2–3 km deep layer with supercooled liquid water co-existing with ice above the melting layer. The maximum surface precipitation occurs when the WCB is at about 2–4 km height. (ii) Convective clouds can be observed above the inflow and during the ascent. (iii) At upper levels, the WCB outflow is typically located near the top of a 3 km deep cirrus layer. (iv) There is a large variability between WCBs in terms of cloud structure, peak reflectivity and associated surface precipitation. (v) The WCB trajectories with the highest radar reflectivities are mainly located over the North Atlantic and North Pacific, and – apart from the inflow – they occur at relatively low latitudes. They are associated with particularly deep and strongly precipitating clouds that occur not only during the ascent but also in the inflow and outflow regions. (vi) ERA5 represents the WCB clouds remarkably well in terms of position, thermodynamic phase and frozen hydrometeor distribution, although it underestimates the high ice and snow values in the mixed-phase clouds near the melting layer. (vii) In the lower troposphere, high potential vorticity is diabatically produced along the WCB in areas with high reflectivities and hydrometeor contents, and at upper levels, low potential vorticity prevails in the cirrus layer in the WCB outflow. The study provides important observational insight into the internal cloud structure of WCBs and emphasizes the ability of ERA5 to essentially capture the observed pattern but also reveals many small- and mesoscale structures observed by the remote sensing instruments but not captured by ERA5.


2020 ◽  
Author(s):  
Emmanouil Flaounas ◽  
Matthias Röthlisberger ◽  
Maxi Boettcher ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract. An extreme aggregation of precipitation on the seasonal timescale, leading to a so-called extreme wet season, can have substantial environmental and socio-economic impacts. In contrast to extreme precipitation events on hourly to daily timescales, which are typically caused by single weather systems, an extreme wet season may be attributed to a combination of different and/or recurring weather systems. In fact, extreme wet seasons may be formed by almost continuously occurring moderate events, or by more frequent and/or more intense short-duration extreme events, or by a combination of these scenarios. This study aims at identifying and statistically characterizing extreme wet seasons around the globe, and elucidating their relationship with specific weather systems. To define extreme wet seasons, we used 40 years (1979–2018) of ERA-Interim reanalyses. Primary extreme seasons were defined independently at every grid point as the consecutive 90-day period with the highest accumulated precipitation. Secondary extreme seasons were also considered, if accumulated precipitation amounts to at least 90 % of the precipitation in the primary season at the same grid point. A high number of secondary extreme seasons was found for instance in the extratropical storm tracks, suggesting that these regions are less likely to experience an exceptional amount of precipitation in a particular 90-day period. In most continental regions, the extreme seasons occur during the warm months of the year, especially in the mid-latitudes. Nevertheless, colder periods might be also relevant to extreme seasons within the same continent, especially in coastal areas. All identified extreme seasons were statistically characterised in terms of anomalies compared to the climatology of the number of wet days and daily extreme events. Results show that daily extremes are decisive for the occurrence of extreme wet seasons in regions of frequent precipitation, e.g. in the tropics. In contrast, e.g., in arid regions where wet days are scarce, extreme seasons may occur only due to anomalously high numbers of wet days. In the subtropics and more precisely within the transitional zones between arid areas and regions of frequent precipitation, both an anomalously high occurrence of daily extremes and wet days are related to the formation of extreme wet seasons. The spatial extent of regions affected by the same extreme wet season is variable and can reach continental scales, although the vast majority of extreme seasons is limited to scales of the order of 20 × 105 km2. Finally, the relationship of extreme seasons to synoptic-scale weather systems was investigated on the basis of four objectively identified weather systems that are known to be associated with intense precipitation: cyclones, warm conveyor belts, tropical moisture exports and breaking Rossby waves. A grid-to-grid association of these weather systems to daily precipitation allows quantifying their role for extreme wet seasons. In particular, cyclones and warm conveyor belts contribute strongly to extreme wet seasons in most regions of the globe. But interlatitudinal influences are also shown to be important: tropical moisture exports, i.e., the poleward transport of tropical moisture, can contribute to extreme wet seasons in the mid-latitudes, while breaking Rossby waves, i.e., the equatorward intrusion of stratospheric air, may decisively contribute to the formation of extreme wet seasons in the tropics. Four illustrative examples provide insight into the synergetic effects of the four identified weather systems on the formation of extreme wet seasons in the Arctic, the mid-latitudes, Australia, and the tropics.


Sign in / Sign up

Export Citation Format

Share Document