scholarly journals Inhibition of sodium–glucose cotransporter-2 preserves cardiac function during regional myocardial ischemia independent of alterations in myocardial substrate utilization

2019 ◽  
Vol 114 (3) ◽  
Author(s):  
Hana E. Baker ◽  
Alexander M. Kiel ◽  
Samuel T. Luebbe ◽  
Blake R. Simon ◽  
Conner C. Earl ◽  
...  
Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 143
Author(s):  
Synne S. Hansen ◽  
Tina M. Pedersen ◽  
Julie Marin ◽  
Neoma T. Boardman ◽  
Ajay M. Shah ◽  
...  

The present study aimed to examine the effects of low doses of angiotensin II (AngII) on cardiac function, myocardial substrate utilization, energetics, and mitochondrial function in C57Bl/6J mice and in a transgenic mouse model with cardiomyocyte specific upregulation of NOX2 (csNOX2 TG). Mice were treated with saline (sham), 50 or 400 ng/kg/min of AngII (AngII50 and AngII400) for two weeks. In vivo blood pressure and cardiac function were measured using plethysmography and echocardiography, respectively. Ex vivo cardiac function, mechanical efficiency, and myocardial substrate utilization were assessed in isolated perfused working hearts, and mitochondrial function was measured in left ventricular homogenates. AngII50 caused reduced mechanical efficiency despite having no effect on cardiac hypertrophy, function, or substrate utilization. AngII400 slightly increased systemic blood pressure and induced cardiac hypertrophy with no effect on cardiac function, efficiency, or substrate utilization. In csNOX2 TG mice, AngII400 induced cardiac hypertrophy and in vivo cardiac dysfunction. This was associated with a switch towards increased myocardial glucose oxidation and impaired mitochondrial oxygen consumption rates. Low doses of AngII may transiently impair cardiac efficiency, preceding the development of hypertrophy induced at higher doses. NOX2 overexpression exacerbates the AngII -induced pathology, with cardiac dysfunction and myocardial metabolic remodelling.


1991 ◽  
Vol 17 (2) ◽  
pp. A144
Author(s):  
M.Pauliina Ramo ◽  
Elizabeth D. Dunlap ◽  
Marjorie Gabel ◽  
Robin Gear ◽  
Robert S. Franco ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jing Yuan ◽  
Jun-Meng Wang ◽  
Zhi-Wei Li ◽  
Cheng-Shun Zhang ◽  
Bin Cheng ◽  
...  

Abstract Background The pathological process of myocardial ischemia (MI) is very complicated. Acupuncture at PC6 has been proved to be effective against MI injury, but the mechanism remains unclear. This study investigated the mechanism that underlies the effect of acupuncture on MI through full-length transcriptome. Methods Adult male C57/BL6 mice were randomly divided into control, MI, and PC6 groups. Mice in MI and PC6 group generated MI model by ligating the left anterior descending (LAD) coronary artery. The samples were collected 5 days after acupuncture treatment. Results The results showed that treatment by acupuncture improved cardiac function, decreased myocardial infraction area, and reduced the levels of cTnT and cTnI. Based on full-length transcriptome sequencing, 5083 differential expression genes (DEGs) and 324 DEGs were identified in the MI group and PC6 group, respectively. These genes regulated by acupuncture were mainly enriched in the inflammatory response pathway. Alternative splicing (AS) is a post-transcriptional action that contributes to the diversity of protein. In all samples, 8237 AS events associated with 1994 genes were found. Some differential AS-involved genes were enriched in the pathway related to heart disease. We also identified 602 new genes, 4 of which may the novel targets of acupuncture in MI. Conclusions Our findings suggest that the effect of acupuncture on MI may be based on the multi-level regulation of the transcriptome.


Author(s):  
Carina Henning ◽  
Anna Branopolski ◽  
Paula Follert ◽  
Oksana Lewandowska ◽  
Aysel Ayhan ◽  
...  

Abstract Background Short episodes of myocardial ischemia can protect from myocardial infarction. However, the role of endothelial β1 integrin in these cardioprotective ischemic events is largely unknown. Objective In this study we investigated whether endothelial β1 integrin is required for cardiac adaptation to ischemia and protection from myocardial infarction. Methods Here we introduced transient and permanent left anterior descending artery (LAD) occlusions in mice. We inhibited β1 integrin by intravenous injection of function-blocking antibodies and tamoxifen-induced endothelial cell (EC)-specific deletion of Itgb1. Furthermore, human ITGB1 was silenced in primary human coronary artery ECs using small interfering RNA. We analyzed the numbers of proliferating ECs and arterioles by immunohistochemistry, determined infarct size by magnetic resonance imaging (MRI) and triphenyl tetrazolium chloride staining, and analyzed cardiac function by MRI and echocardiography. Results Transient LAD occlusions were found to increase EC proliferation and arteriole formation in the entire myocardium. These effects required β1 integrin on ECs, except for arteriole formation in the ischemic part of the myocardium. Furthermore, this integrin subunit was also relevant for basal and mechanically induced proliferation of human coronary artery ECs. Notably, β1 integrin was needed for cardioprotection induced by transient LAD occlusions, and the absence of endothelial β1 integrin resulted in impaired growth of blood vessels into the infarcted myocardium and reduced cardiac function after permanent LAD occlusion. Conclusion We showed that endothelial β1 integrin is required for adaptation of the heart to cardiac ischemia and protection from myocardial infarction.


1994 ◽  
Vol 78 (6) ◽  
pp. 1047???1052 ◽  
Author(s):  
Masashi Kono ◽  
Shigeho Morita ◽  
Takayuki Hayashi ◽  
Mieko Saitoh ◽  
Nobuo Fuke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document