Effects of diurnal changes on temporal processing in morning-type and evening-type individuals with normal hearing

Author(s):  
Praveen Prakash ◽  
Ariya Jayan ◽  
Prashanth Prabhu
2021 ◽  
Vol 30 (1) ◽  
pp. 160-169
Author(s):  
Yang-Soo Yoon ◽  
Callie Michelle Boren ◽  
Brianna Diaz

Purpose To measure the effect of testing conditions (in the soundproof booth vs. quiet room), test order, and number of test sessions on spectral and temporal processing in normal-hearing (NH) listeners. Method Thirty-two adult NH listeners participated in the three experiments. For all three experiments, the stimuli were presented to the left ear at the subjects' most comfortable level through headphones. All tests were administered in an adaptive three-alternative forced-choice paradigm. Experiment 1 was designed to compare the effect of soundproof booth and quiet room test conditions on amplitude modulation detection threshold and modulation frequency discrimination threshold with each of the five modulation frequencies. Experiment 2 was designed to compare the effect of two test orders on the frequency discrimination thresholds under the quiet room test conditions. The thresholds were first measured in the ascending and descending order of four pure tones, and then with counterbalanced order. For Experiment 3, the amplitude discrimination threshold under the quiet room testing condition was assessed 3 times to determine the effect of the number of test sessions. Then the thresholds were compared over the sessions. Results Results showed no significant effect of test environment. The test order is an important variable for frequency discrimination, particularly between piano tunes and pure tones. Results also show no significant difference across test sessions. Conclusions These results suggest that a controlled test environment may not be required in spectral and temporal assessment for NH listeners. Under the quiet test environment, a single outcome measure is sufficient, but test orders should be counterbalanced.


2011 ◽  
Vol 22 (07) ◽  
pp. 393-404 ◽  
Author(s):  
Elizabeth D. Leigh-Paffenroth ◽  
Saravanan Elangovan

Background: Hearing loss and age interfere with the auditory system's ability to process temporal changes in the acoustic signal. A key unresolved question is whether high-frequency sensorineural hearing loss (HFSNHL) affects temporal processing in the low-frequency region where hearing loss is minimal or nonexistent. A second unresolved question is whether changes in hearing occur in middle-aged subjects in the absence of HFSNHL. Purpose: The purpose of this study was twofold: (1) to examine the influence of HFSNHL and aging on the auditory temporal processing abilities of low-frequency auditory channels with normal hearing sensitivity and (2) to examine the relations among gap detection measures, self-assessment reports of understanding speech, and functional measures of speech perception in middle-aged individuals with and without HFSNHL. Research Design: The subject groups were matched for either age (middle age) or pure-tone sensitivity (with or without hearing loss) to study the effects of age and HFSNHL on behavioral and functional measures of temporal processing and word recognition performance. These effects were analyzed by individual repeated-measures analyses of variance. Post hoc analyses were performed for each significant main effect and interaction. The relationships among the measures were analyzed with Pearson correlations. Study Sample: Eleven normal-hearing young adults (YNH), eight normal-hearing middle-aged adults (MANH), and nine middle-aged adults with HFSNHL were recruited for this study. Normal hearing sensitivity was defined as pure-tone thresholds ≤25 dB HL for octave frequencies from 250 to 8000 Hz. HFSNHL was defined as pure-tone thresholds ≤25 dB HL from 250 to 2000 Hz and ≥35 dB HL from 3000 to 8000 Hz. Data Collection and Analysis: Gap detection thresholds (GDTs) were measured under within-channel and between-channel conditions with the stimulus spectrum limited to regions of normal hearing sensitivity for the HFSNHL group (i.e., <2000 Hz). Self-perceived hearing problems were measured by a questionnaire (Abbreviated Profile of Hearing Aid Benefit), and word recognition performance was assessed under four conditions: quiet and babble, with and without low-pass filtering (cutoff frequency = 2000 Hz). Results: The effects of HFSNHL and age were found for gap detection, self-perceived hearing problems, and word recognition in noise. The presence of HFSNHL significantly increased GDTs for stimuli presented in regions of normal pure-tone sensitivity. In addition, middle-aged subjects with normal hearing sensitivity reported significantly more problems hearing in background noise than the young normal-hearing subjects. Significant relationships between self-report measures of hearing ability in background noise and word recognition in babble were found. Conclusions: The conclusions from the present study are twofold: (1) HFSNHL may have an off-channel impact on auditory temporal processing, and (2) presenescent changes in the auditory system of MANH subjects increased self-perceived problems hearing in background noise and decreased functional performance in background noise compared with YNH subjects.


2006 ◽  
Vol 25 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Jinghua Huang ◽  
Tetsuo Katsuura ◽  
Yoshihiro Shimomura ◽  
Koichi Iwanaga
Keyword(s):  

2006 ◽  
Vol 9 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Jinghua Huang ◽  
Tetsuo Katsuura ◽  
Yoshihiro Shimomura ◽  
Koichi Iwanaga

2020 ◽  
Author(s):  
Chelsea Blankenship ◽  
Jareen Meinzen-Derr ◽  
Fawen Zhang

Objective: Individual differences in temporal processing contributes strongly to the large variability in speech recognition performance observed among cochlear implant (CI) recipients. Temporal processing is traditionally measured using a behavioral gap detection task, and therefore, it can be challenging or infeasible to obtain reliable responses from young children and individuals with disabilities. Within-frequency gap detection (pre- and post-gap markers are identical in frequency) is more common, yet across-frequency gap detection (pre- and post-gap markers are spectrally distinct), is thought to be more important for speech perception because the phonemes that proceed and follow the rapid temporal cues are rarely identical in frequency. However, limited studies have examined across-frequency temporal processing in CI recipients. None of which have included across-frequency cortical auditory evoked potentials (CAEP), nor was the correlation between across-frequency gap detection and speech perception examined. The purpose of the study is to evaluate behavioral and electrophysiological measures of across-frequency temporal processing and speech recognition in normal hearing (NH) and CI recipients. Design: Eleven post-lingually deafened adult CI recipients (n = 15 ears, mean age = 50.4 yrs.) and eleven age- and gender-matched NH individuals participated (n = 15 ears; mean age = 49.0 yrs.). Speech perception was evaluated using the Minimum Speech Test Battery for Adult Cochlear Implant Users (CNC, AzBio, BKB-SIN). Across-frequency behavioral gap detection thresholds (GDT; 2 kHz to 1 kHz post-gap tone) were measured using an adaptive, two-alternative, forced-choice paradigm. Across-frequency CAEPs were measured using four gap duration conditions; supra-threshold (behavioral GDT x 3), threshold (behavioral GDT), sub-threshold (behavioral GDT/3), and reference (no gap) condition. Group differences in behavioral GDTs, and CAEP amplitude and latency were evaluated using multiple mixed effects models. Bivariate and multivariate canonical correlation analyses were used to evaluate the relationship between the CAEP amplitude and latency, behavioral GDTs, and speech perception. Results: A significant effect of participant group was not observed for across-frequency GDTs, instead older participants (> 50 yrs.) displayed larger GDTs than younger participants. CI recipients displayed increased P1 and N1 latency compared to NH participants and older participants displayed delayed N1 and P2 latency compared to younger adults. Bivariate correlation analysis between behavioral GDTs and speech perception measures were not significant (p > 0.01). Across-frequency canonical correlation analysis showed a significant relationship between CAEP reference condition and behavioral measures of speech perception and temporal processing. Conclusions: CI recipients show similar across-frequency temporal GDTs compared to NH participants, however older participants (> 50 yrs.) displayed poorer temporal processing (larger GDTs) compared to younger participants. CI recipients and older participants displayed less efficient neural processing of the acoustic stimulus and slower transmission to the auditory cortex. An effect of gap duration on CAEP amplitude or latency was not observed. Canonical correlation analysis suggests better cortical detection of frequency changes is correlated with better word and sentence understanding in quiet and noise.


Author(s):  
Sheila Oppitz ◽  
Isadora Pelissari ◽  
Marjana Gois ◽  
Michele Garcia ◽  
Rubia Bruno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document