scholarly journals Diurnal changes in differential sensitivity and temporal resolution in morning-type and evening-type individuals with normal hearing

2018 ◽  
Vol 4 (4) ◽  
pp. 229-233
Author(s):  
J. Nikhil ◽  
K.N. Megha ◽  
Prashanth Prabhu
2013 ◽  
Vol 24 (01) ◽  
pp. 037-045 ◽  
Author(s):  
Shannon B. Palmer ◽  
Frank E. Musiek

Background: Normal temporal processing is important for the perception of speech in quiet and in difficult listening situations. Temporal resolution is commonly measured using a behavioral gap detection task, where the patient or subject must participate in the evaluation process. This is difficult to achieve with subjects who cannot reliably complete a behavioral test. However, recent research has investigated the use of evoked potential measures to evaluate gap detection. Purpose: The purpose of the current study was to record N1-P2 responses to gaps in broadband noise in normal hearing young adults. Comparisons were made of the N1 and P2 latencies, amplitudes, and morphology to different length gaps in noise in an effort to quantify the changing responses of the brain to these stimuli. It was the goal of this study to show that electrophysiological recordings can be used to evaluate temporal resolution and measure the influence of short and long gaps on the N1-P2 waveform. Research Design: This study used a repeated-measures design. All subjects completed a behavioral gap detection procedure to establish their behavioral gap detection threshold (BGDT). N1-P2 waveforms were recorded to the gap in a broadband noise. Gap durations were 20 msec, 2 msec above their BGDT, and 2 msec. These durations were chosen to represent a suprathreshold gap, a near-threshold gap, and a subthreshold gap. Study Sample: Fifteen normal-hearing young adult females were evaluated. Subjects were recruited from the local university community. Data Collection and Analysis: Latencies and amplitudes for N1 and P2 were compared across gap durations for all subjects using a repeated-measures analysis of variance. A qualitative description of responses was also included. Results: Most subjects did not display an N1-P2 response to a 2 msec gap, but all subjects had present clear evoked potential responses to 20 msec and 2+ msec gaps. Decreasing gap duration toward threshold resulted in decreasing waveform amplitude. However, N1 and P2 latencies remained stable as gap duration changed. Conclusions: N1-P2 waveforms can be elicited by gaps in noise in young normal-hearing adults. The responses are present as low as 2 msec above behavioral gap detection thresholds (BGDT). Gaps that are below BGDT do not generally evoke an electrophysiological response. These findings indicate that when a waveform is present, the gap duration is likely above their BGDT. Waveform amplitude is also a good index of gap detection, since amplitude decreases with decreasing gap duration. Future studies in this area will focus on various age groups and individuals with auditory disorders.


2015 ◽  
Vol 8 (7) ◽  
pp. 2901-2907 ◽  
Author(s):  
Z. Wang ◽  
D. Liu ◽  
Y. Wang ◽  
Z. Wang ◽  
G. Shi

Abstract. A strong diurnal variation of aerosol has been observed in many heavily polluted regions in China. This variation could affect the direct aerosol radiative forcing (DARF) evaluation if the daily averaged value is used as normal rather than the time-resolved values. To quantify the effect of using the daily averaged DARF, 196 days of high temporal resolution ground-based data collected in SKYNET Hefei site during the period from 2007 to 2013 is used to perform an assessment. We demonstrate that strong diurnal changes of heavy aerosol loading have an impact on the 24-h averaged DARF when daily averaged optical properties are used to retrieve this quantity. The DARF errors varying from −7.6 to 15.6 W m−2 absolutely and from 0.1 to 28.5 % relatively were found between the calculations using daily average aerosol properties, and those using time-resolved aerosol observations. These errors increase with increasing daily aerosol optical depth (AOD) and decreasing daily single-scattering albedo (SSA), indicating that the high temporal resolution DARF data set should be used in the model instead of the normal daily-averaged one, especially under heavy aerosol loading conditions for regional campaign studies. We also found that statistical errors (0.3 W m−2 absolutely and 11.8 % relatively) will be less, which means that the effect of using the daily averaged DARF can be weakened by using a long-term observational data set.


1992 ◽  
Vol 35 (2) ◽  
pp. 436-442 ◽  
Author(s):  
John P. Madden ◽  
Lawrence L. Feth

This study compares the temporal resolution of frequency-modulated sinusoids by normal-hearing and hearing-impaired subjects in a discrimination task. One signal increased linearly by 200 Hz in 50 msec. The other was identical except that its trajectory followed a series of discrete steps. Center frequencies were 500, 1000, 2000, and 4000 Hz. As the number of steps was increased, the duration of the individual steps decreased, and the subjects’ discrimination performance monotonically decreased to chance. It was hypothesized that the listeners could not temporally resolve the trajectory of the step signals at short step durations. At equal sensation levels, and at equal sound pressure levels, temporal resolution was significantly reduced for the impaired subjects. The difference between groups was smaller in the equal sound pressure level condition. Performance was much poorer at 4000 Hz than at the other test frequencies in all conditions because of poorer frequency discrimination at that frequency.


2015 ◽  
Vol 24 (2) ◽  
pp. 216-225
Author(s):  
Ramya Vaidyanath ◽  
Asha Yathiraj

Purpose Gap-detection thresholds have been reported to vary depending on the type of stimuli used. The current study compared the performance of older adults on 2 tests of temporal resolution, one with random gaps and the other with gaps in the center of a noise signal. The study also determined which of the 2 tests was able to detect more temporal resolution deficits in older individuals. Method Two tests of temporal resolution, the Gap Detection Test (GDT; Shivaprakash, 2003) and the Gaps-In-Noise test (GIN; Musiek et al., 2005), were administered to 31 older adults with near normal hearing, aged 55 to 70 years. The order in which the tests were administered was randomized. Results The gap-detection thresholds obtained using GIN were significantly higher than those obtained using GDT. The difference in thresholds was ascribed to the randomness with which gaps were interspersed within noise segments in the 2 tests. More individuals failed on GIN than GDT. The older adults with high-frequency hearing loss obtained poorer gap thresholds than those with normal hearing. Conclusion The results indicated that older individuals failed GIN more often compared to GDT. This was attributed to the differences in stimuli and procedure used in the 2 tests.


2006 ◽  
Vol 25 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Jinghua Huang ◽  
Tetsuo Katsuura ◽  
Yoshihiro Shimomura ◽  
Koichi Iwanaga
Keyword(s):  

2004 ◽  
Vol 47 (5) ◽  
pp. 965-978 ◽  
Author(s):  
Richard A. Roberts ◽  
Jennifer J. Lister

Older listeners with normal-hearing sensitivity and impaired-hearing sensitivity often demonstrate poorer-than-normal performance on tasks of speech understanding in noise and reverberation. Deficits in temporal resolution and in the precedence effect may underlie this difficulty. Temporal resolution is often studied by means of a gap-detection paradigm. This task is similar to binaural fusion paradigms used to measure the precedence effect. The purpose of this investigation was to determine if within-channel (measured with monotic and diotic gap detection) or across-channel (measured with dichotic gap detection) temporal resolution is related to fusion (measured with lag-burst thresholds; LBTs) under dichotic, anechoic, and reverberant conditions. Gap-detection thresholds (GDTs) and LBTs were measured by means of noise-burst stimuli for 3 groups of listeners: young adults with normal-hearing sensitivity (YNH), older adults with normal-hearing sensitivity (ONH), and older adults with impaired-hearing sensitivity (OIH). The GDTs indicated that across-channel temporal resolution is poorer than within-channel temporal resolution and that the effects of age and hearing loss are dependent on condition. Results for the fusion task indicated higher LBTs in reverberation than for the dichotic and anechoic conditions, regardless of group, and no effect of age or hearing loss for the nonreverberant conditions. However, higher LBTs were observed in the reverberant condition for the ONH listeners. Further, there was a correlation between across-channel temporal resolution and fusion in reverberation. Gap detection and fusion may not necessarily reflect the same underlying processes; however, across-channel gap detection may influence fusion under certain conditions (i.e., in reverberation).


2006 ◽  
Vol 9 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Jinghua Huang ◽  
Tetsuo Katsuura ◽  
Yoshihiro Shimomura ◽  
Koichi Iwanaga

2012 ◽  
Vol 24 (2) ◽  
pp. 168-173 ◽  
Author(s):  
Luciana Leal de Sousa ◽  
Karin Ziliotto Dias ◽  
Liliane Desgualdo Pereira

PURPOSE: To assess the auditory ability of temporal resolution and to compare the random gap detection test (RGDT) versions with pure tone and clicks stimuli. METHODS: Participants were 40 young individuals of both genders with ages between 18 and 25 years, and normal hearing thresholds for the sound frequencies of 250 Hz to 8 kHz. Initially, participants were submitted to the basic audiological evaluation. Then they underwent the RGDT with pure tone and clicks stimuli. Finally, we obtained the temporal acuity threshold, which corresponds to the shorter silence interval in which the patient perceives two sounds, for each type of stimulus, called final temporal acuity threshold for pure tones (mean of the thresholds obtained for 500 Hz, 1k, 2k and 4 kHz), and temporal acuity threshold for clicks. RESULTS: The mean temporal acuity threshold for the sound frequency of 500 Hz was 7.25 ms; for the frequency of 1 kHz was 7.25 ms; for 2 kHz was 6.73 ms; for the frequency of 4 kHz was 6.03 ms. The final temporal acuity threshold was 6.72 ms. The mean temporal acuity threshold for clicks was 6.43 ms. No difference was found between the temporal acuity thresholds obtained with pure tone and clicks stimuli. CONCLUSION: There is no difference in the performance of individuals on the auditory ability of temporal resolution, regardless of the auditory stimulus used.


Sign in / Sign up

Export Citation Format

Share Document