Temporal Processing in Low-Frequency Channels: Effects of Age and Hearing Loss in Middle-Aged Listeners

2011 ◽  
Vol 22 (07) ◽  
pp. 393-404 ◽  
Author(s):  
Elizabeth D. Leigh-Paffenroth ◽  
Saravanan Elangovan

Background: Hearing loss and age interfere with the auditory system's ability to process temporal changes in the acoustic signal. A key unresolved question is whether high-frequency sensorineural hearing loss (HFSNHL) affects temporal processing in the low-frequency region where hearing loss is minimal or nonexistent. A second unresolved question is whether changes in hearing occur in middle-aged subjects in the absence of HFSNHL. Purpose: The purpose of this study was twofold: (1) to examine the influence of HFSNHL and aging on the auditory temporal processing abilities of low-frequency auditory channels with normal hearing sensitivity and (2) to examine the relations among gap detection measures, self-assessment reports of understanding speech, and functional measures of speech perception in middle-aged individuals with and without HFSNHL. Research Design: The subject groups were matched for either age (middle age) or pure-tone sensitivity (with or without hearing loss) to study the effects of age and HFSNHL on behavioral and functional measures of temporal processing and word recognition performance. These effects were analyzed by individual repeated-measures analyses of variance. Post hoc analyses were performed for each significant main effect and interaction. The relationships among the measures were analyzed with Pearson correlations. Study Sample: Eleven normal-hearing young adults (YNH), eight normal-hearing middle-aged adults (MANH), and nine middle-aged adults with HFSNHL were recruited for this study. Normal hearing sensitivity was defined as pure-tone thresholds ≤25 dB HL for octave frequencies from 250 to 8000 Hz. HFSNHL was defined as pure-tone thresholds ≤25 dB HL from 250 to 2000 Hz and ≥35 dB HL from 3000 to 8000 Hz. Data Collection and Analysis: Gap detection thresholds (GDTs) were measured under within-channel and between-channel conditions with the stimulus spectrum limited to regions of normal hearing sensitivity for the HFSNHL group (i.e., <2000 Hz). Self-perceived hearing problems were measured by a questionnaire (Abbreviated Profile of Hearing Aid Benefit), and word recognition performance was assessed under four conditions: quiet and babble, with and without low-pass filtering (cutoff frequency = 2000 Hz). Results: The effects of HFSNHL and age were found for gap detection, self-perceived hearing problems, and word recognition in noise. The presence of HFSNHL significantly increased GDTs for stimuli presented in regions of normal pure-tone sensitivity. In addition, middle-aged subjects with normal hearing sensitivity reported significantly more problems hearing in background noise than the young normal-hearing subjects. Significant relationships between self-report measures of hearing ability in background noise and word recognition in babble were found. Conclusions: The conclusions from the present study are twofold: (1) HFSNHL may have an off-channel impact on auditory temporal processing, and (2) presenescent changes in the auditory system of MANH subjects increased self-perceived problems hearing in background noise and decreased functional performance in background noise compared with YNH subjects.

1981 ◽  
Vol 24 (1) ◽  
pp. 108-112 ◽  
Author(s):  
P. M. Zurek ◽  
C. Formby

Thresholds for frequency modulation were measured by an adaptive, two-alternative, forced-choice method with ten listeners: eight who showed varying degrees of sensorineural hearing impairment, and two with normal-hearing sensitivity. Results for test frequencies spaced at octave intervals between 125 and 4000 Hz showed that, relative to normal-hearing listeners, the ability of the hearing-impaired listeners to detect a sinusoidal frequency modulation: (1) is diminished above a certain level of hearing loss; and (2) is more disrupted for low-frequency tones than for high-frequency tones, given the same degree of hearing loss at the test frequency. The first finding is consistent with that of previous studies which show a general deterioration of frequency-discrimination ability associated with moderate, or worse, hearing loss. It is proposed that the second finding may be explained: 1) by differential impairment of the temporal and place mechanisms presumed to, encode pitch at the lower and higher frequencies, respectively; and/or, 2) for certain configurations of hearing loss, by the asymmetrical pattern of cochlear excitation that may lead to the underestimation, from measurements of threshold sensitivity, of hearing impairment for low-frequency tones and consequently to relatively large changes in frequency discrimination for small shifts in hearing threshold.


1997 ◽  
Vol 106 (3) ◽  
pp. 220-225 ◽  
Author(s):  
Xue Zhong Liu ◽  
Valerie E. Newton

Eight patients with Waardenburg's syndrome (WS) with normal hearing and 3 additional patients exhibiting a low-frequency hearing loss were tested for the level of the acoustic distortion product 2f1-f2 by means of the Otodynamics Distortion Product Analyser (ILO92). Wide notches in distortion product otoacoustic emissions (DPOAEs) between 1,000 and 3,000 Hz were found in 7 (12 ears, 87.5%) examined patients with normal audiograms, which was a significantly higher rate than that found in the control group (10%). The 3 patients with low-frequency hearing loss gave a consistent pattern in audiometric configuration shown by both pure tone audiograms and DPOAEs. It is concluded from these initial results that DPOAEs may be a useful approach to identifying subclinical pathologic aberrations in the inner ear in WS patients, and may be a predictor of low-frequency sensorineural hearing loss.


1989 ◽  
Vol 54 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Randall C. Beattie

Word recognition functions for Auditee recordings of the CID W-22 stimuli in multitalker noise were obtained using subjects with normal hearing and with mild-to-moderate sensorineural hearing loss. In the first experiment, word recognition functions were generated by varying the signal-to-noise ratio (S/N); whereas in the second experiment, a constant S/N was used and stimulus intensity was varied. The split-half reliability of word recognition scores for the normal-hearing and hearing-impaired groups revealed variability that agreed closely with predictions based on the simple binomial distribution. Therefore, the binomial model appears appropriate for estimating the variability of word recognition scores whether they are obtained in quiet or in a competing background noise. The reliability for threshold (50% point) revealed good stability. The slope of the recognition function was steeper for normal listeners than for the hearing-impaired subjects. Word recognition testing in noise can provide insight into the problems imposed by hearing loss, particularly when evaluating patients with mild hearing loss who exhibit no difficulties with conventional tests. Clinicians should employ a sufficient number of stimuli so that the test is adequately sensitive to differences among listening conditions.


2004 ◽  
Vol 47 (5) ◽  
pp. 965-978 ◽  
Author(s):  
Richard A. Roberts ◽  
Jennifer J. Lister

Older listeners with normal-hearing sensitivity and impaired-hearing sensitivity often demonstrate poorer-than-normal performance on tasks of speech understanding in noise and reverberation. Deficits in temporal resolution and in the precedence effect may underlie this difficulty. Temporal resolution is often studied by means of a gap-detection paradigm. This task is similar to binaural fusion paradigms used to measure the precedence effect. The purpose of this investigation was to determine if within-channel (measured with monotic and diotic gap detection) or across-channel (measured with dichotic gap detection) temporal resolution is related to fusion (measured with lag-burst thresholds; LBTs) under dichotic, anechoic, and reverberant conditions. Gap-detection thresholds (GDTs) and LBTs were measured by means of noise-burst stimuli for 3 groups of listeners: young adults with normal-hearing sensitivity (YNH), older adults with normal-hearing sensitivity (ONH), and older adults with impaired-hearing sensitivity (OIH). The GDTs indicated that across-channel temporal resolution is poorer than within-channel temporal resolution and that the effects of age and hearing loss are dependent on condition. Results for the fusion task indicated higher LBTs in reverberation than for the dichotic and anechoic conditions, regardless of group, and no effect of age or hearing loss for the nonreverberant conditions. However, higher LBTs were observed in the reverberant condition for the ONH listeners. Further, there was a correlation between across-channel temporal resolution and fusion in reverberation. Gap detection and fusion may not necessarily reflect the same underlying processes; however, across-channel gap detection may influence fusion under certain conditions (i.e., in reverberation).


2008 ◽  
Vol 19 (07) ◽  
pp. 548-556 ◽  
Author(s):  
Richard H. Wilson ◽  
Wendy B. Cates

Background: The Speech Recognition in Noise Test (SPRINT) is a word-recognition instrument that presents the 200 Northwestern University Auditory Test No. 6 (NU-6) words binaurally at 50 dB HL in a multitalker babble at a 9 dB signal-to-noise ratio (S/N) (Cord et al, 1992). The SPRINT was developed by and used by the Army as a more valid predictor of communication abilities (than pure-tone thresholds or word-recognition in quiet) for issues involving fitness for duty from a hearing perspective of Army personnel. The Words-in-Noise test (WIN) is a slightly different word-recognition task in a fixed level multitalker babble with 10 NU-6 words presented at each of 7 S/N from 24 to 0 dB S/N in 4 dB decrements (Wilson, 2003; Wilson and McArdle, 2007). For the two instruments, both the babble and the speakers of the words are different. The SPRINT uses all 200 NU-6 words, whereas the WIN uses a maximum of 70 words. Purpose: The purpose was to compare recognition performances by 24 young listeners with normal hearing and 48 older listeners with sensorineural hearing on the SPRINT and WIN protocols. Research Design: A quasi-experimental, mixed model design was used. Study Sample: The 24 young listeners with normal hearing (19 to 29 years, mean = 23.3 years) were from the local university and had normal hearing (≤20 dB HL; American National Standards Institute, 2004) at the 250–8000 Hz octave intervals. The 48 older listeners with sensorineural hearing loss (60 to 82 years, mean = 69.9 years) had the following inclusion criteria: (1) a threshold at 500 Hz between 15 and 30 dB HL, (2) a threshold at 1000 Hz between 20 and 40 dB HL, (3) a three-frequency pure-tone average (500, 1000, and 2000 Hz) of ≤40 dB HL, (4) word-recognition scores in quiet ≥40%, and (5) no history of middle ear or retrocochlear pathology as determined by an audiologic evaluation. Data Collection and Analysis: The speech materials were presented bilaterally in the following order: (1) the SPRINT at 50 dB HL, (2) two half lists of NU-6 words in quiet at 60 dB HL and 80 dB HL, and (3) the two 35-word lists of the WIN materials with the multitalker babble fixed at 60 dB HL. Data collection occurred during a 40–60 minute session. Recognition performances on each stimulus word were analyzed. Results: The listeners with normal hearing obtained 92.5% correct on the SPRINT with a 50% point on the WIN of 2.7 dB S/N. The listeners with hearing loss obtained 65.3% correct on the SPRINT and a WIN 50% point at 12.0 dB S/N. The SPRINT and WIN were significantly correlated (r = −0.81, p < .01), indicating that the SPRINT had good concurrent validity. The high-frequency, pure-tone average (1000, 2000, 4000 Hz) had higher correlations with the SPRINT, WIN, and NU-6 in quiet than did the traditional three-frequency pure-tone average (500, 1000, 2000 Hz). Conclusions: Graphically and numerically the SPRINT and WIN were highly related, which is indicative of good concurrent validity of the SPRINT.


2012 ◽  
Vol 24 (2) ◽  
pp. 168-173 ◽  
Author(s):  
Luciana Leal de Sousa ◽  
Karin Ziliotto Dias ◽  
Liliane Desgualdo Pereira

PURPOSE: To assess the auditory ability of temporal resolution and to compare the random gap detection test (RGDT) versions with pure tone and clicks stimuli. METHODS: Participants were 40 young individuals of both genders with ages between 18 and 25 years, and normal hearing thresholds for the sound frequencies of 250 Hz to 8 kHz. Initially, participants were submitted to the basic audiological evaluation. Then they underwent the RGDT with pure tone and clicks stimuli. Finally, we obtained the temporal acuity threshold, which corresponds to the shorter silence interval in which the patient perceives two sounds, for each type of stimulus, called final temporal acuity threshold for pure tones (mean of the thresholds obtained for 500 Hz, 1k, 2k and 4 kHz), and temporal acuity threshold for clicks. RESULTS: The mean temporal acuity threshold for the sound frequency of 500 Hz was 7.25 ms; for the frequency of 1 kHz was 7.25 ms; for 2 kHz was 6.73 ms; for the frequency of 4 kHz was 6.03 ms. The final temporal acuity threshold was 6.72 ms. The mean temporal acuity threshold for clicks was 6.43 ms. No difference was found between the temporal acuity thresholds obtained with pure tone and clicks stimuli. CONCLUSION: There is no difference in the performance of individuals on the auditory ability of temporal resolution, regardless of the auditory stimulus used.


2005 ◽  
Vol 16 (06) ◽  
pp. 367-382 ◽  
Author(s):  
Richard H. Wilson ◽  
Deborah G. Weakley

The purpose of this study was to determine if performances on a 500 Hz MLD task and a word-recognition task in multitalker babble covaried or varied independently for listeners with normal hearing and for listeners with hearing loss. Young listeners with normal hearing (n = 25) and older listeners (25 per decade from 40–80 years, n = 125) with sensorineural hearing loss were studied. Thresholds at 500 and 1000 Hz were ≤30 dB HL and ≤40 dB HL, respectively, with thresholds above 1000 Hz <100 dB HL. There was no systematic relationship between the 500 Hz MLD and word-recognition performance in multitalker babble. Higher SoNo and SπNo; thresholds were observed for the older listeners, but the MLDs were the same for all groups. Word recognition in babble in terms of signal-to-babble ratio was on average 6.5 (40- to 49-year-old group) to 10.8 dB (80- to 89-year-old group) poorer for the older listeners with hearing loss. Neither pure-tone thresholds nor word-recognition abilities in quiet accurately predicted word-recognition performance in multitalker babble.


1988 ◽  
Vol 31 (4) ◽  
pp. 659-669 ◽  
Author(s):  
Glenis R. Long ◽  
John K. Cullen

Estimates of threshold, wide- and narrow-band noise masking, frequency and amplitude modulation detection, gap detection, and rate discrimination were obtained from 10 subjects with near-normal hearing at frequencies above 6 kHz, but severe-to-profound hearing losses at lower frequencies. The same measures were obtained from 10 young control subjects with normal hearing sensitivity for all frequencies up to 16 kHz. The hearing-impaired subjects were able to process sounds in the region of near-normal hearing sensitivity as well as the unimpaired control subjects. Performance in the low-frequency, impaired region depended on the lowest frequency of near-normal hearing sensitivity.


2005 ◽  
Vol 48 (2) ◽  
pp. 482-493 ◽  
Author(s):  
Jennifer J. Lister ◽  
Richard A. Roberts

Deficits in temporal resolution and/or the precedence effect may underlie part of the speech understanding difficulties experienced by older listeners in degraded acoustic environments. In a previous investigation, R. Roberts and J. Lister (2004) identified a positive correlation between measures of temporal resolution and the precedence effect, specifically across-channel gap detection (as measured dichotically) and fusion. Across-channel gap detection may also be measured using frequency-disparate markers. Thus, the present investigation was designed to determine if the relation is specific to dichotic gap detection or may generalize to all types of across-channel gap detection. Gap-detection thresholds (GDTs) for fixed-frequency and frequency-disparate markers and lag-burst thresholds (LBTs) were measured for 3 groups of listeners: young with normal hearing sensitivity (YNH), older with normal hearing sensitivity (ONH), and older with sensorineural hearing loss (OIH). Also included were conditions of diotic and dichotic GDT. Largest GDTs were measured for the frequency-disparate markers, whereas largest LBTs were measured for the fixed-frequency markers. ONH and OIH listeners exhibited larger frequency-disparate and dichotic GDTs than YNH listeners. Listener age and hearing loss appeared to influence temporal resolution for frequency-disparate and dichotic stimuli, which is potentially important for the resolution of timing cues in speech. Age and hearing loss did not significantly influence fusion as measured by LBTs. Within each participant group, most GDTs and LBTs were positively, but not significantly, correlated. For all participants combined, across-channel GDTs and LBTs were positively and significantly correlated. This suggests that the 2 tasks may rely on a common across-channel temporal mechanism.


2005 ◽  
Vol 16 (08) ◽  
pp. 622-630 ◽  
Author(s):  
Richard H. Wilson ◽  
Christopher A. Burks ◽  
Deborah G. Weakley

The purpose of this experiment was to determine the relationship between psychometric functions for words presented in multitalker babble using a descending presentation level protocol and a random presentation level protocol. Forty veterans (mean = 63.5 years) with mild-to-moderate sensorineural hearing losses were enrolled. Seventy of the Northwestern University Auditory Test No. 6 words spoken by the VA female speaker were presented at seven signal-to-babble ratios from 24 to 0 dB (10 words/step). Although the random procedure required 69 sec longer to administer than the descending protocol, there was no significant difference between the results obtained with the two psychophysical methods. There was almost no relation between the perceived ability of the listeners to understand speech in background noise and their measured ability to understand speech in multitalker babble. Likewise, there was a tenuous relation between pure-tone thresholds and performance on the words in babble and between recognition performance in quiet and performance on the words in babble.


Sign in / Sign up

Export Citation Format

Share Document