scholarly journals The role of microglia in neuropsychiatric disorders and suicide

Author(s):  
Ralf Brisch ◽  
Szymon Wojtylak ◽  
Arthur Saniotis ◽  
Johann Steiner ◽  
Tomasz Gos ◽  
...  

AbstractThis narrative review examines the possible role of microglial cells, first, in neuroinflammation and, second, in schizophrenia, depression, and suicide. Recent research on the interactions between microglia, astrocytes and neurons and their involvement in pathophysiological processes of neuropsychiatric disorders is presented. This review focuses on results from postmortem, positron emission tomography (PET) imaging studies, and animal models of schizophrenia and depression. Third, the effects of antipsychotic and antidepressant drug therapy, and of electroconvulsive therapy on microglial cells are explored and the upcoming development of therapeutic drugs targeting microglia is described. Finally, there is a discussion on the role of microglia in the evolutionary progression of human lineage. This view may contribute to a new understanding of neuropsychiatric disorders.

2018 ◽  
Vol 25 (26) ◽  
pp. 3096-3104 ◽  
Author(s):  
Daniele Mauro ◽  
Gaetano Barbagallo ◽  
Salvatore D`Angelo ◽  
Pasqualina Sannino ◽  
Saverio Naty ◽  
...  

In the last years, an increasing interest in molecular imaging has been raised by the extending potential of positron emission tomography [PET]. The role of PET imaging, originally confined to the oncology setting, is continuously extending thanks to the development of novel radiopharmaceutical and to the implementation of hybrid imaging techniques, where PET scans are combined with computed tomography [CT] or magnetic resonance imaging[MRI] in order to improve spatial resolution. Early preclinical studies suggested that 18F–FDG PET can detect neuroinflammation; new developing radiopharmaceuticals targeting more specifically inflammation-related molecules are moving in this direction. Neurological involvement is a distinct feature of various systemic autoimmune diseases, i.e. Systemic Lupus Erythematosus [SLE] or Behcet’s disease [BD]. Although MRI is largely considered the gold-standard imaging technique for the detection of Central Nervous System [CNS] involvement in these disorders. Several patients complain of neuropsychiatric symptoms [headache, epilepsy, anxiety or depression] in the absence of any significant MRI finding; in such patients the diagnosis relies mainly on clinical examination and often the role of the disease process versus iatrogenic or reactive forms is doubtful. The aim of this review is to explore the state-of-the-art for the role of PET imaging in CNS involvement in systemic rheumatic diseases. In addition, we explore the potential role of emerging radiopharmaceutical and their possible application in aiding the diagnosis of CNS involvement in systemic autoimmune diseases.


Author(s):  
Richa Gandhi ◽  
Michael Bell ◽  
Marc Bailey ◽  
Charalampos Tsoumpas

AbstractAbdominal aortic aneurysm (AAA) disease is characterized by an asymptomatic, permanent, focal dilatation of the abdominal aorta progressing towards rupture, which confers significant mortality. Patient management and surgical decisions rely on aortic diameter measurements via abdominal ultrasound surveillance. However, AAA rupture can occur at small diameters or may never occur at large diameters, implying that anatomical size is not necessarily a sufficient indicator. Molecular imaging may help identify high-risk patients through AAA evaluation independent of aneurysm size, and there is the question of the potential role of positron emission tomography (PET) and emerging role of novel radiotracers for AAA. Therefore, this review summarizes PET studies conducted in the last 10 years and discusses the usefulness of PET radiotracers for AAA risk stratification. The most frequently reported radiotracer was [18F]fluorodeoxyglucose, indicating inflammatory activity and reflecting the biomechanical properties of AAA. Emerging radiotracers include [18F]-labeled sodium fluoride, a calcification marker, [64Cu]DOTA-ECL1i, an indicator of chemokine receptor type 2 expression, and [18F]fluorothymidine, a marker of cell proliferation. For novel radiotracers, preliminary trials in patients are warranted before their widespread clinical implementation. AAA rupture risk is challenging to evaluate; therefore, clinicians may benefit from PET-based risk assessment to guide patient management and surgical decisions.


Sign in / Sign up

Export Citation Format

Share Document