The gravitational influence of Jupiter on the Ptolemaic value for the eccentricity of Saturn

Author(s):  
Christián C. Carman
2018 ◽  
Vol 125 (6) ◽  
pp. 1720-1730 ◽  
Author(s):  
Eric T. Geier ◽  
Kent Kubo ◽  
Rebecca J. Theilmann ◽  
Gordon K. Prisk ◽  
Rui C. Sá

The location of lung regions with compromised ventilation (often called ventilation defects) during a bronchoconstriction event may be influenced by posture. We aimed to determine the effect of prone versus supine posture on the spatial pattern of methacholine-induced bronchoconstriction in six healthy adults (ages 21–41, 3 women) using specific ventilation imaging. Three postural conditions were chosen to assign the effect of posture to the drug administration and/or imaging phase of the experiment: supine methacholine administration followed by supine imaging, prone methacholine administration followed by supine imaging, and prone methacholine administration followed by prone imaging. The two conditions in which imaging was performed supine had similar spatial patterns of bronchoconstriction despite a change in posture during methacholine administration; the odds ratio for recurrent constriction was mean (SD) = 7.4 (3.9). Conversely, dissimilar spatial patterns of bronchoconstriction emerged when posture during imaging was changed; the odds ratio for recurrent constriction between the prone methacholine/supine imaging condition and the prone methacholine/prone imaging condition was 1.2 (0.9). Logistic regression showed that height above the dependent lung border was a significant negative predictor of constriction in the two supine imaging conditions ( P < 0.001 for each) but not in the prone imaging condition ( P = 0.20). These results show that the spatial pattern of methacholine bronchoconstriction is recurrent in the supine posture, regardless of whether methacholine is given prone or supine but that prone posture during imaging eliminates that recurrent pattern and reduces its dependence on gravitational height. NEW & NOTEWORTHY The spatial pattern of methacholine bronchoconstriction in the supine posture is recurrent and skewed toward the dependent lung, regardless of whether inhaled methacholine is administered while supine or while prone. However, both the recurrent pattern and the gravitational skew are eliminated if imaging is performed prone. These results suggest that gravitational influence on regional lung inflation and airway topography at the time of measurement play a role in determining regional bronchoconstriction in the healthy lung.


2015 ◽  
Vol 55 (3) ◽  
pp. 203-214 ◽  
Author(s):  
Michal Zajacek ◽  
Vladimir Karas ◽  
Devaky Kunneriath

Streams of gas and dust in the inner parsec of the Galactic center form a distinct feature known as the Minispiral, which has been studied in radio waveband as well as in the infrared wavebands. A large fraction of the Minispiral gas is ionized by radiation of OB stars present in the Nuclear Star Cluster (NSC). Based on the inferred mass in the innermost parsec ( ~106 solar masses), over ~103–104 neutron stars should move in the sphere of gravitational influence of the SMBH. We estimate that a fraction of them propagate through the denser, ionized medium concentrated mainly along the three arms of the Minispiral. Based on the properties of the gaseous medium, we discuss different interaction regimes of magnetised neutron stars passing through this region. Moreover, we sketch expected observational effects of these regimes. The simulation results may be applied to other galactic nuclei hosting NSC, where the expected distribution of the interaction regimes is different across different galaxy types.


2017 ◽  
Vol 26 (1) ◽  
Author(s):  
Zackary L. Hutchens ◽  
Brad N. Barlow ◽  
Alan Vasquez Soto ◽  
Dan E. Reichart ◽  
Josh B. Haislip ◽  
...  

AbstractCS 1246 is a hot subdwarf B star discovered in 2009 to exhibit a single, large-amplitude radial pulsation. An O-C diagram constructed from this mode revealed reflex motion due to the presence of a low-mass M dwarf, as well as a long-term trend consistent with a decrease in the pulsational period. The orbital reflex motion was later confirmed with radial velocity measurements. Using eight years of data collected with the Skynet Robotic Telescope Network, we show that the pulsation amplitude of CS 1246 is decaying nonlinearly. We also present an updated O-C diagram, which might now indicate a positive Ṗ and a new 2.09 ± 0.05 yr oscillation consistent with orbital reflex motion of the entire inner sdB+dM binary, possibly due to the gravitational influence of a circumbinary planet with minimum mass


2020 ◽  
Vol 128 (5) ◽  
pp. 1146-1152
Author(s):  
Cara H. Y. Cheung ◽  
May L. Khaw ◽  
Victor C. W. Tam ◽  
Michael T. C. Ying ◽  
Shara W. Y. Lee

The use of impedance cardiography to monitor physiological changes in sports is rarely reported. Using head-up tilt test, we evaluated a portable noninvasive impedance cardiography device (PhysioFlow) by comparing it with a reference Doppler monitor (USCOM). Accuracy in tracking hemodynamic changes deteriorated with higher tilt, implying a gravitational influence on its performance. Stroke volume measurements were overestimated, but the changes were underestimated. Despite its convenient physical features, the suitability of PhysioFlow for sports use is questionable.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Peng Zhang ◽  
Kun She

The target of the clustering analysis is to group a set of data points into several clusters based on the similarity or distance. The similarity or distance is usually a scalar used in numerous traditional clustering algorithms. Nevertheless, a vector, such as data gravitational force, contains more information than a scalar and can be applied in clustering analysis to promote clustering performance. Therefore, this paper proposes a three-stage hierarchical clustering approach called GHC, which takes advantage of the vector characteristic of data gravitational force inspired by the law of universal gravitation. In the first stage, a sparse gravitational graph is constructed based on the top k data gravitations between each data point and its neighbors in the local region. Then the sparse graph is partitioned into many subgraphs by the gravitational influence coefficient. In the last stage, the satisfactory clustering result is obtained by merging these subgraphs iteratively by using a new linkage criterion. To demonstrate the performance of GHC algorithm, the experiments on synthetic and real-world data sets are conducted, and the results show that the GHC algorithm achieves better performance than the other existing clustering algorithms.


1983 ◽  
Vol 104 ◽  
pp. 255-258
Author(s):  
R. D. Davies

A measurement of the motion of the Local Group of galaxies through the Universe provides an indication of their peculiar motion relative to the Hubble flow consequent upon the gravitational influence of the local large scale mass inhomogeneities. This motion can be measured either relative to the cosmic microwave background at z ∼ 1000 or relative to the background or nearby (z ∼ 0.01) galaxies. The interpretation of published measurements is subject to some uncertainty. As an example, the Local Group motion derived from optical studies of nearby galaxies (Rubin et al. 1976) differs from that derived from radio frequency measurements of the dipole anisotropy in the microwave background. (Boughn et al. 1981, Gorenstein & Smoot 1981).


2019 ◽  
Vol 224 ◽  
pp. 03012
Author(s):  
Vadim Il’chenko

Based on the principle of Equivalence of Gravitating Masses (EGM) and tectonostratigraphic model of the Earth outer shell structure (the Earth crust and upper mantle), the average depth of the lunar mass gravitational influence on the Earth was calculated as ~1600 km. The developed model is based on the mechanism of rocks tectonic layering of the Earth crust-mantle shell as an oscillatory system with dynamic conditions of a standing wave, regularly excited by the lunar tide and immediately passing into the damping mode. After comparing the average depth of solid lunar tide impact of ~1600 km with the height of the solid lunar tide “hump” on the Earth surface of 0.5 m, a “tensile strain” was calculated with an amplitude only one order of magnitude larger than the amplitude of the gravitational wave recorded by the Advanced LIGO interferometer: A≈10-18 m (the merger result of a black holes pair ca 1.3 Ga ago). The results of the present study suggest that the crust-mantle shell of the Earth may be used as a gravitational-wave interferometer.


Matter in the Universe can be detected either by the radiation it emits or by its gravitational influence. There is a strong suggestion that the Universe contains substantial hidden matter, mass without corresponding light. There are also arguments from elementary particle physics that the Universe should have closure density, which would also imply hidden mass. Observations of the chemical composition of the Universe interpreted in terms of the hot Big Bang cosmological theory suggest that this hidden matter cannot all be of baryonic form but must consist of weakly interacting elementary particles. A combination of observations and theoretical ideas about the origin of large-scale structure may demand that these particles are of a type which is not yet definitely known to exist.


2014 ◽  
Vol 45 ◽  
pp. 523-532
Author(s):  
Jeaniffer Vides ◽  
Edouard Audit ◽  
Boniface Nkonga

Sign in / Sign up

Export Citation Format

Share Document