gravitational influence
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 23)

H-INDEX

9
(FIVE YEARS 4)

2021 ◽  
Vol 133 (11-12) ◽  
Author(s):  
José J. Rosales ◽  
Àngel Jorba ◽  
Marc Jorba-Cuscó

AbstractThis paper deals with direct transfers from the Earth to Halo orbits related to the translunar point. The gravitational influence of the Sun as a fourth body is taken under consideration by means of the Bicircular Problem (BCP), which is a periodic time dependent perturbation of the Restricted Three Body Problem (RTBP) that includes the direct effect of the Sun on the spacecraft. In this model, the Halo family is quasi-periodic. Here we show how the effect of the Sun bends the stable manifolds of the quasi-periodic Halo orbits in a way that allows for direct transfers.


2021 ◽  
Vol 162 (6) ◽  
pp. 278
Author(s):  
Alexander Zderic ◽  
Maria Tiongco ◽  
Angela Collier ◽  
Heather Wernke ◽  
Aleksey Generozov ◽  
...  

Abstract Axisymmetric disks of eccentric orbits in near-Keplerian potentials are unstable and undergo exponential growth in inclination. Recently, Zderic et al. showed that an idealized disk then saturates to a lopsided mode. Here we show, using N-body simulations, that this apsidal clustering also occurs in a primordial Scattered Disk in the outer solar system, which includes the orbit-averaged gravitational influence of the giant planets. We explain the dynamics using Lynden-Bell's mechanism for bar formation in galaxies. We also show surface density and line-of-sight velocity plots at different times during the instability, highlighting the formation of concentric circles and spiral arms in velocity space.


2021 ◽  
Vol 5 (3) ◽  
pp. 153-159
Author(s):  
T. A. Ledkova ◽  
Yu. M. Zabolotnov

The development of space transport systems for the delivery of payloads and the study of the lunar surface is an important scientific and technical challenge. The article considers a near-lunar space tether system consisting of a station and a microsatellite. The station is considered as a rigid body having a cylindrical shape, and the microsatellite is considered as a spherical rigid body. The tether is considered as a weightless inextensible rod of variable length. The station moves in a near-lunar orbit, which is influenced by the Earth's gravity. The process of deployment of a radially directed near-lunar tether system is considered. The equations of motion of the space tether system are obtained using Newton's second law and the theorem on the change in the angular momentum. To release the tether and bring the orbital tether system to a working state, the article proposes to use the control program of tethers tension force, which ensures the deployment of the tether system to a position close to the vertical. A comparison of the motion of the tether system along the unperturbed lunar orbit and along the perturbed one, taking into account the gravitational influence of the Earth, is made. To substantiate the theoretical results, a numerical simulation was carried out, based on the results of which a conclusion was made about the influence of the Earth's gravity on the amplitude of oscillations of the microsatellite relative to the local vertical.


2021 ◽  
Vol 55 (4) ◽  
pp. 341-347
Author(s):  
V. V. Emel’yanenko

Abstract— The dynamical features of a massive disk of distant trans-Neptunian objects are considered in the model of the formation of small bodies in the Hill region of a giant gas-dust clump that arose as a result of gravitational instability and fragmentation of the protoplanetary disk. The dynamical evolution of the orbits of small bodies under the action of gravitational perturbations from the outer planets and self-gravity of the disk has been studied for a time interval of the order of a billion years. It is shown that the secular effects of the gravitational influence of a massive disk of small bodies lead to an increase in the eccentricities of the orbits of individual objects. The result of this dynamical behavior is the creation of a flux of small bodies coming close to the orbit of Neptune. The change in the number of objects surviving in the observable region of distant trans-Neptunian objects (the region of orbits with perihelion distances of 40 < q < 80 AU and semimajor axes 150 < a < 1000 AU), over time depends on the initial mass of the disk. For disks with masses exceeding several Earth masses, there is a tendency to a decrease in the number of distant trans-Neptunian objects surviving in the observable region after evolution for a time interval of the order of the age of the Solar System, with an increase in the initial mass. On the other hand, for most objects, orbital eccentricities decrease under the influence of the self-gravity of the disk. Therefore, the main part of the disk is preserved in the region of heliocentric distances exceeding 100 AU.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2784
Author(s):  
Konstantinos Adamopoulos ◽  
Dimitrios Koutsouris ◽  
Apostolos Zaravinos ◽  
George I. Lambrou

Gravity constituted the only constant environmental parameter, during the evolutionary period of living matter on Earth. However, whether gravity has affected the evolution of species, and its impact is still ongoing. The topic has not been investigated in depth, as this would require frequent and long-term experimentations in space or an environment of altered gravity. In addition, each organism should be studied throughout numerous generations to determine the profound biological changes in evolution. Here, we review the significant abnormalities presented in the cardiovascular, immune, vestibular and musculoskeletal systems, due to altered gravity conditions. We also review the impact that gravity played in the anatomy of snakes and amphibians, during their evolution. Overall, it appears that gravity does not only curve the space–time continuum but the biological continuum, as well.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Vladyslav Litovchenko

Developing Holtzmark’s idea, the distribution of nonstationary fluctuations of local interaction of moving objects of the system with gravitational influence, which is characterized by the Riesz potential, is constructed. A pseudodifferential equation with the Riesz fractional differentiation operator is found, which corresponds to this process. The general nature of symmetric stable random Lévy processes is determined.


Author(s):  
A. James Friedson

The properties of ice giant normal mode oscillations, including their periods, spatial structure, stratospheric amplitudes and relative influence on the external gravity field, are surveyed for the purpose of formulating the best strategy for their eventual detection. Measurement requirements for detecting a normal mode's periodic pressure and temperature variations, including a possible stratospheric signal, and its effect on the external gravity field, are discussed in terms of its radial velocity amplitude at the 1 bar pressure level. It is found that for reasonable amplitudes, detection of the pressure and temperature variations of ice giant normal modes presents an extraordinary technical challenge. The prospects for detecting their gravitational influence on an orbiting spacecraft are more promising, with requirements that lie within the range of current technology. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.


2020 ◽  
Vol 500 (1) ◽  
pp. 1285-1312
Author(s):  
Callum Bellhouse ◽  
Sean L McGee ◽  
Rory Smith ◽  
Bianca M Poggianti ◽  
Yara L Jaffé ◽  
...  

ABSTRACT We present the first study of the effect of ram pressure ‘unwinding’ the spiral arms of cluster galaxies. We study 11 ram-pressure stripped galaxies from GASP (GAs Stripping Phenomena in galaxies) in which, in addition to more commonly observed ‘jellyfish’ features, dislodged material also appears to retain the original structure of the spiral arms. Gravitational influence from neighbours is ruled out and we compare the sample with a control group of undisturbed spiral galaxies and simulated stripped galaxies. We first confirm the unwinding nature, finding that the spiral arm pitch angle increases radially in 10 stripped galaxies and also simulated face-on and edge-on stripped galaxies. We find only younger stars in the unwound component, while older stars in the disc remain undisturbed. We compare the morphology and kinematics with simulated ram-pressure stripping galaxies, taking into account the estimated inclination with respect to the intracluster medium (ICM) and find that in edge-on stripping, unwinding can occur due to differential ram pressure caused by the disc rotation, causing stripped material to slow and ‘pile up’. In face-on cases, gas removed from the outer edges falls to higher orbits, appearing to ‘unwind’. The pattern is fairly short-lived (&lt;0.5 Gyr) in the stripping process, occurring during first infall and eventually washed out by the ICM wind into the tail of the jellyfish galaxy. By comparing simulations with the observed sample, we find that a combination of face-on and edge-on ‘unwinding’ effects is likely to be occurring in our galaxies as they experience stripping with different inclinations with respect to the ICM.


Author(s):  
J. F. Brock

Abstract. Since the dawn of time the Moon has held fascination for the earliest humans who saw it as a natural navigational beacon, a heavenly body to be revered and a poetic inspiration. Ancient art features the Moon as a prominent subject from all epochs and genres. The name “lunatic” infers that it drives men insane. Giant tides and rapid recessions of water are all attributed to its gravitational influence. As a young boy I was thrilled by stories of Moon travel like Jules Verne’s “From the Earth to the Moon” plus TV shows and movies such as “Lost in Space”, “Star Trek” and “Dr. Who.”The Russian-American “Space Race” focussed on the exciting possibility of man landing on the Moon. I cannot forget the live telecast of the Apollo 11 astronauts on the Moon’s surface in 1969 when I was 13 years old. Four years later I decided to be a land boundary surveyor trained in precise measurement for land title creation. My curiosity was alerted to the Apollo 11 laser ranging aspect of the project when the US team set up a bank of retro-reflectors for measurements from powerful devices on the Earth in the same way we Earthly surveyors make our daily measurements using such EDM equipment.In this paper I will describe the techniques and equipment utilised during this accurate Moon positioning project. You will also see the Earth observatories still measuring to five sites on the Moon and some ancient admirable attempts to determine this distance.


Sign in / Sign up

Export Citation Format

Share Document