scholarly journals Geochemical characteristics and Sr–Nd–Hf isotope compositions of mantle xenoliths and host basalts from Assab, Eritrea: implications for the composition and thermal structure of the lithosphere beneath the Afar Depression

2009 ◽  
Vol 159 (5) ◽  
pp. 731-751 ◽  
Author(s):  
Mengist Teklay ◽  
Erik E. Scherer ◽  
Klaus Mezger ◽  
Leonid Danyushevsky
Island Arc ◽  
2020 ◽  
Vol 29 (1) ◽  
Author(s):  
Haikun Zhang ◽  
Peng Hu ◽  
Liang Cao ◽  
Armin Tampubolon ◽  
Asui Liu ◽  
...  

2019 ◽  
Vol 2 (4) ◽  
pp. 167-175
Author(s):  
Tai Minh Nguyen ◽  
Hoa Xuan Tran ◽  
Giang Thi Truong Nguyen ◽  
Cuong Chi Truong ◽  
Minh Pham

The granite of the Song Ma block mainly consists of two types of granite: biotite granite and hornblende-biotite granite. Biotite granites have the percent of plagioclase (35– 45%), K-feldspar (25–35%), quartz (~20%) and biotite (~10%). Biotite-hornblende granite with the content of plagioclase (40–50%), Kfeldspar (10–15%), hornblende (5–10%) and biotite (5%). Zircon crystals were selected from the granite of Song Ma block are V0741, V0856 and V1006 samples with the LA-ICPMS U-Pb analyses gave concordant ages concentrated at 257±4Ma, 262±3Ma and 241±6Ma (weighted mean). Those ages are older than the results of the previous research. The mineral assemblages and geochemical characteristics show the typical of I-type granites. The results of Hf isotope composition analysis give the value of εHf(t) from +7.3 to +13.9, which is proven the sources of the granite Song Ma block similar to the granite of Phan Si Pan zone, NW Viet Nam during the period from late Permian to early Triassic.


2020 ◽  
Vol 222 (1) ◽  
pp. 207-224 ◽  
Author(s):  
Alexandra Pleus ◽  
Garrett Ito ◽  
Paul Wessel ◽  
L Neil Frazer

SUMMARY We examine the rheology and thermal structure of the oceanic lithosphere, expressed in situ by plate flexure beneath the Hawaiian Ridge, where volcanoes of variable sizes have loaded seafloor of approximately the same age, and thus where the lithosphere is expected to have had an approximately uniform age-dependent thermal structure at the time of loading. Shipboard and satellite-derived gravity, as well as multibeam bathymetry data are used in models of plate flexure with curvature-dependent flexural rigidity, the strength of which is limited, in the shallow lithosphere, by brittle failure, and in the deeper lithosphere, by low-temperature plasticity (LTP). We compute relative likelihoods and posterior probabilities for four model parameters: average crustal density ρc, friction coefficient for brittle failure ${\mu _f}$, a pre-exponential weakening factor F controlling the strength of LTP and lithospheric geotherm age t. Results show that if the lithosphere temperatures were as is expected for normal (t = ) 90-Myr-old seafloor at the time of volcano loading, the rheology must be significantly weaker than expected. Specifically, weak brittle strengths (μf ≤ 0.3) show relatively high probabilities for three of the six published LTP flow laws examined. Alternatively, moderate-to-large brittle strengths (μf ≥ 0.5) require all LTP flow laws to be substantially weakened with F = 102 to > 108 or, equivalently, activation energy reduced by 10–35 per cent. In contrast, if the lithosphere has been moderately reheated by the Hawaiian hotspot, represented by geotherms for t = 50–70 Myr, then the flow laws of Evans & Goetze, Raterron et al. and Krancj et al. require little or no weakening. Such modest thermal rejuvenation is allowed by heatflow constraints, supported by regional mantle seismic tomography imaging as well as compositions of mantle xenoliths, and reconciles previously noted discrepancies between the LTP strengths of lithosphere beneath Hawaii versus that entering the Pacific subduction zones.


Sign in / Sign up

Export Citation Format

Share Document