afar depression
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 10)

H-INDEX

23
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Jean-Charles Schaegis ◽  
Valentin Rime ◽  
Tesfaye Kidane ◽  
Jon Mosar ◽  
Ermias Filfilu Gebru ◽  
...  

Lake Afdera is a hypersaline endorheic lake situated at 112 m below sea-level in the Danakil Depression. The Danakil Depression is located in the northern part of the Ethiopian Afar and features an advanced stage of continental rifting. The remoteness and inhospitable environment explain the limited scientific research and knowledge about this lake. Bathymetric data were acquired during 2 weeks expeditions in January/February 2016 and 2017 using an easily deployable echosounder system mounted on an inflatable motorized boat. This study presents the first complete bathymetric map of the lake Afdera. Bathymetric results show that the lake has an average depth of 20.9 m and a total volume of 2.4 km3. The maximum measured depth is 80 m, making Lake Afdera the deepest known lake in Afar and the lowest elevation of the Danakil Depression. Comparison with historical reports shows that the lake level did not fluctuate significantly during the last 50 years. Two distinct tectonic basins to the north and the south are recognized. Faults of different orientations control the morphology of the northern basin. In contrast, the southern basin is affected by volcano-tectonic processes, unveiling a large submerged caldera. Comparison between the orientation of faults throughout the lake with the regional fault pattern indicates that the lake is part of two transfer zones: the major Alayta–Afdera Transfer Zone and the smaller Erta Ale–Tat’Ali Transfer Zone. The interaction between these Transfer Zones and the rift axis forms the equivalent of a developing nodal basin which explains the lake’s position as the deepest point of the depression. This study provides evidence for the development of an incipient transform fault on the floor of the Afar depression.


2021 ◽  
Vol 44 (1) ◽  
pp. 91-107
Author(s):  
Polina Lemenkova

This study evaluates the geomorphometric parameters of the topography in Ethiopia using scripting cartographic methods by applying R languages (packages 'tmap' and 'raster') and Generic Mapping Tools (gmt) for 2D and 3D topographic modelling. Data were collected from the open source repositories on geospatial data with high resolution: gebco with 15 arc-second and etopo1 with 1 arc-minute resolution and embedded dataset of srtm 90 m in 'raster' library of R. The study demonstrated application of the programming approaches in cartographic data visualization and mapping for geomorphometric analysis. This included modelling of slope steepness, aspect and hillshade visualized using dem srtm90 to derive geomorphometric parameters of slope, aspect and hillshade of Ethiopia and demonstrate contrasting topography and variability climate setting of Ethiopia. The topography of the country is mapped, including Great Rift Valley, Afar Depression, Ogaden Desert and the most distinctive features of the Ethiopian Highlands. A variety of topographical zones is demonstrated on the presented maps. The results include 6 new maps made using programming console-based approach which is a novel method of cartographic visualization compared to traditional gis software. The most important fragments of the codes are presented and technical explanations are provided. The presented series of 6 new maps contributes to the cartographic data on Ethiopia and presents the methodology of scripting mapping techniques.


2021 ◽  
Vol 5 (01) ◽  
Author(s):  
Till Jakob Frederik Trojer

“Arho – The Afar Salt Trade of North-eastern Ethiopia” follows the journey of a camel caravan to the salt plains of the Afar Depression. Traditionally the caravans moved from Afar Depression to other parts of Ethiopia and to the Red Sea coastal regions of modern-day Eritrea and Djibouti. For centuries the control, trade and distribution of salt was of primary importance in the articulation of economic, social, and political life of the nomadic communities living along the caravan trails. Since 2010, trucks have slowly replaced the camel caravans. This has led to a steady decline in the trade. The film, relying on strong visual imagery and traditional Afar music, selected by the participant of this project, documents how the decline of this trade affects the daily life of the communities in Berahle district of North-eastern Ethiopia. The documentary is part of PhD project at the Department of Anthropology and Sociology at the School of Oriental and African Studies (SOAS), University London. It is based on 13 months ethnographic research (2017-2018) that combines anthropological theory with ethnographic filmmaking to explore new and creative ways of collaborative research.


Author(s):  
Iwona Gajda ◽  
Julien Charbonnier ◽  
Xavier Peixoto

The site of Wakarida is situated near the eastern edge of the Tigray plateau, dominating the Afar depression. The study on the site has started in 2011 with a short archaeological and geophysical survey. During the three campaigns of excavations between 2012 and in 2013, carried out in two areas, the archaeologists unearthed typically Aksumite buildings accompanied by abundant ceramic material, with a significant proportion of fine ceramics. The buildings have been dated between the 3rd and the 6th century AD, period confirmed by C14 analyses. In several places, the remains of walls visible on surface and pottery shards testify to the existence of other ancient structures. The site of Wakarida, covering some 9 ha, was probably a small city or a village during the Aksumite period. The survey of its region has enabled to study the landscape, mostly shaped by man, and to discover other archaeological sites, two of which are comparable in size to Wakarida.


2020 ◽  
Author(s):  
Frank Zwaan ◽  
Giacomo Corti ◽  
Derek Keir ◽  
Federico Sani ◽  
Ameha Muluneh ◽  
...  

<p>This multidisciplinary study focuses on the tectonics of the Western Afar Margin (WAM), which is situated between the Ethiopian Plateau and Afar Depression in East Africa. The WAM represents a developing passive margin in a highly volcanic setting, thus offering unique opportunities for the study of rifting and (magma-rich) continental break-up, and our results have both regional and global implications.</p><p>Earthquake analysis shows that the margin is still deforming under a ca. E-W extension regime (a result also obtained by analysis on fault measurements from recent field campaigns), whereas Afar itself undergoes a more SW-NE extension. Together with GPS data, we see Afar currently opening in a rotational fashion. This opening is however a relatively recent and local phenomenon, due to the rotation of the Danakil microcontinent modifying the regional stress field (since 11 Ma). Regional tectonics is otherwise dominated by the rotation of Arabia since 25 Ma and should cause SW-NE (oblique) extension along the WAM. This oblique motion is indeed recorded in the large-scale en echelon fault patterns along the margin, which were reactivated in the current E-W extension regime. We thus have good evidence of a multiphase rotational history of the WAM and Afar.</p><p>Furthermore, analysis of the margin’s structural architecture reveals large-scale flexure towards Afar, likely representing the developing seaward-dipping reflectors that are typical for magma-rich margins. Detailed fault mapping and earthquake analysis show that recent faulting is dominantly antithetic (dipping away from the rift), bounding remarkable marginal grabens, although a large but older synthetic escarpment fault system is present as well. By means of analogue modelling efforts we find that marginal flexure indeed initially develops a large escarpment, whereas the currently active structures only form after significant flexure. Moreover, these models show that marginal grabens do not develop under oblique extension conditions. Instead, the latter model boundary conditions create the large-scale en echelon fault arrangement typical of the WAM. We derive that the recent structures of the margin could have developed only after a shift to local orthogonal extension. These modeling results support the multiphase extension scenario as described above.</p><p>Altogether, our findings are highly relevant for our understanding of the structural evolution of (magma-rich) passive margins. Indeed, seismic sections of such margins show very similar structures to those of the WAM. However, the general lack of marginal grabens, which are so obvious along the WAM, can be explained by the fact that most rift systems undergo or have undergone oblique extension, often in multiple phases during which structures from older phases control subsequent deformation.</p>


2020 ◽  
Author(s):  
Alessandro La Rosa ◽  
Cecile Doubre ◽  
Carolina Pagli ◽  
Federico Sani ◽  
Giacomo Corti ◽  
...  

<p>During the evolution of continental rift systems, extension focuses along on-axis magmatic segments while extensional structures along the rift margins seem to progressively become inactive. However, how strain is partitioned between rift axes and rift margins is still poorly understood. The Afar Rift is the locus of extension between Nubia, Arabia and Somalia and is believed to record the latest stages of rifting and incipient continental break-up. The Afar rift axis is bounded at its western margin by a seismically active system of normal faults separating the Afar depression from the Ethiopian Plateau through a series of large bounding faults and marginal grabens. Although most of the extension in Afar is currently accommodated on-axis, several earthquakes with Mw > 5.0 occurred in the past decades on the Western Afar Margin (WAM). Here we analysed the most recent M<sub>w</sub> 5.2 earthquake on the WAM on 24 March 2018 and the following seismic sequence using data recorded by a temporary seismic network, set up between 2017 and 2018. We located 800 events from the 20 March to the 30 April 2018 using twenty-three local seismic stations and a new velocity model for the WAM based on a new receiver function study. Preliminary results show that seismicity during the 2018 event focused at mid-to-low crustal depths (from ~15 km to ~35 km) along west-dipping fault planes. Shallower upper crustal earthquakes also occurred on west-dipping fault planes.</p><p>The hypocentral location of the mainshock has also been investigated using InSAR. We processed four independent interferograms using Sentinel-1 data acquired from a descending track. None of them shows any significant surface deformation, confirming the large depth of the hypocenters. Furthermore, we tested possible ranges of depth by producing a series of forward models assuming fault located at progressively increasing depths and corresponding to a Mw 5.2 earthquake. Our models show that surface deformations are < 1 cm at depths greater than 15 km, in agreement with our hypocentral depth of 18 km for the main shock estimated from seismic data. </p><p>Our seismicity observations of slip along west-dipping faults show that deformation across the WAM is currently accommodated by antithetic faulting, as suggested by structural geology studies. Lower crustal earthquakes might occur in a strong lower crust due to the presence of mafic lower crust and/or be induced by migrating fluids such as magma or CO<sup>2</sup>.</p>


2019 ◽  
Vol 60 (8) ◽  
pp. 1681-1715
Author(s):  
Dejene Hailemariam Feyissa ◽  
Hiroshi Kitagawa ◽  
Tesfaye Demissie Bizuneh ◽  
Ryoji Tanaka ◽  
Kurkura Kabeto ◽  
...  

Abstract New K–Ar ages, major and trace element concentrations, and Sr–Nd–Pb isotope data are presented for Oligocene to recent mafic volcanic rocks from the Ethiopian Plateau, the Main Ethiopian Rift (MER), and the Afar depression. Chronological and geochemical data from this study are combined with previously published datasets to reveal secular variations in magmatism throughout the entire Ethiopian volcanic region. The mafic lavas in these regions show variability in terms of silica-saturation (i.e. alkaline and sub-alkaline series) and extent of differentiation (mafic through intermediate to felsic). The P–T conditions of melting, estimated using the least differentiated basalts, reveal a secular decrease in the mantle potential temperature, from when the flood basalt magmas erupted (up to 1600 °C) to the time of the rift-related magmatism (<1500°C). Variations in the Sr–Nd–Pb isotopic compositions of the mafic lavas can account for the involvement of multiple end-member components. The relative contributions of these end-member components vary in space and time owing to changes in the thermal condition of the asthenosphere and the thickness of the lithosphere. The evolution of the Ethiopian rift is caused by a transition from plume-driven to plate-driven mantle upwelling, although the present-day mantle beneath the MER and the Afar depression is still warmer than normal asthenosphere.


Sign in / Sign up

Export Citation Format

Share Document