scholarly journals Tectono-magmatic controls on decratonic gold deposits

2021 ◽  
Vol 176 (9) ◽  
Author(s):  
Jia Chang ◽  
Andreas Audétat ◽  
Jian-Wei Li

AbstractMagmatic-hydrothermal gold–copper deposits in post-subduction settings represent essential targets for mineral exploration, but controls on their formation remain controversial. The early Cretaceous lode Au districts that formed during lithosphere destruction of the North China Craton provide an ideal opportunity to better understand the key tectono-magmatic factors responsible for the genesis of Au-rich deposits in post-subduction settings. Here, we present a LA-ICP-MS study of silicate melt inclusions and sulfide inclusions from ore-related mafic to intermediate rocks in the central Taihangshan Au district in the interior of the North China Craton to constrain the content and evolution of magmatic ore metals ± volatiles. The results, combined with numerical modeling, suggest that the ore-related magmas contained only a few ng/g Au, which is similar to the Au content of non-mineralization-related mafic to intermediate magmas worldwide. The low Au content of the lode Au-related magmas suggest that large volumes of magmas had to accumulate in the middle to lower crust through trans-lithospheric fault systems to produce the lode Au deposits. It is further suggested that the lode Au-related magmas were alkali-rich, hydrous, oxidized and relatively rich in sulfur and chlorine (mafic melt inclusions contain 0.14‒0.24 wt% S and 0.1‒0.2 wt% Cl). These properties are considered critical for the generation of auriferous ore fluids. By comparing the tectono-magmatic setting of the giant Jiaodong Au province (~ 4000 t Au) with the central Taihangshan district (~ 150 t Au), we propose that the much larger total Au tonnage of the Jiaodong district results from the accumulation of a much larger volume of ore-forming magmas at deep crustal levels, induced by a stronger degree of lithosphere modification. In addition, given that the composition of lode Au-related magmas is similar to that of porphyry Cu–Au-related magmas, the lack of giant, early Cretaceous porphyry Cu–Au deposits in the North China Craton suggests that strong extensional settings favor the formation of lode Au deposits instead of porphyry Cu–Au deposits. The present study, therefore, has general implications for the genesis of Au-rich deposits in strongly extensional settings.

2010 ◽  
Vol 2 (4) ◽  
Author(s):  
Ye Cao ◽  
Shengrong Li ◽  
Meijuan Yao ◽  
Huafeng Zhang

AbstractThermoluminescence (TL) of monomineralic separates have been widely used in various geosciences fields in order to trace the thermal history and aid in prospecting for gold deposits. Quartz is a ubiquitous mineral in the Shihu gold deposit, which is situated in the northern part of the Taihang orogenic belt in the North China craton (NCC). The deposit is hosted by ductile-brittle faults within an Archean metamorphic core complex of the Fuping Group. This deposit is characterized by gold-bearing quartz-polymetallic sulfides and quartz veins. New TL results have been obtained for quartz, in which four type-TL glow curves were identified. The gold-bearing quartz present type III glow curves that consist of two peak glow curves at the middle and high peak temperatures with the similar TL intensity. In addition, the cross-sections of peak temperatures and TL intensity highlight the valuable area where the Au-bearing quartz present weak TL intensity and low-middle peak temperatures. Our results significantly enhance the usefulness of quartz in metallogenic studies of the North China craton and as an indicator mineral in mineral exploration of the Taihang Mountain region.


2021 ◽  
pp. 104933
Author(s):  
Wuke Chen ◽  
Yi Liufu ◽  
Lei Wu ◽  
Chenyu Zhang ◽  
Hongwei Zhang ◽  
...  

2002 ◽  
Vol 37 (3) ◽  
pp. 326-351 ◽  
Author(s):  
Craig J. Hart ◽  
Richard J. Goldfarb ◽  
Yumin Qiu ◽  
Lawrence Snee ◽  
Lance D. Miller ◽  
...  

2021 ◽  
Vol 58 (1) ◽  
pp. 50-66
Author(s):  
Yang Dong ◽  
Jingdang Liu ◽  
Yanfei Zhang ◽  
Shiyong Dou ◽  
Yanbin Li ◽  
...  

Mesozoic magmatic rocks are widely distributed in the North China Craton (NCC) and are crucial to understanding the timing, location, and geodynamic mechanisms of lithospheric thinning of the NCC. In this study, we report geochronological, petrogeochemical, and Lu–Hf isotopic data for adakitic granitoids from different parts of Xiuyan pluton in the Liaodong Peninsula, aiming to constrain their magma sources, petrogenesis, and tectonic implications. The adakites are metaluminous to weakly peraluminous and are classified as high-K calc-alkaline I-type granite with Early Cretaceous zircon U–Pb ages of 129–126 Ma. They exhibit adakite-like geochemical characteristics, such as high Sr content and low Yb and Y contents, coupled with high Sr/Y and no pronounced Eu anomalies. They are enriched in Rb, U, and light rare-earth elements and are depleted in Ta, Nb, P, and Ti. The adakites from the eastern part of the pluton have low εHf(t) values (–8.5 to –4.0) with old TDM2 ages (1.57–1.31 Ga), indicating they were derived from the lower crust containing juvenile mantle-derived materials. In contrast, adakites from the northern part of the pluton have lower εHf(t) values (–19.7 to –16.6) with older TDM2 ages (2.21–2.03 Ga), indicating that they were derived mainly from an ancient crust. Our results show that both adakitic magmas were derived from partial melting of delaminated lower crust. Their relatively high MgO and Ni contents and Mg# values indicate that the melts interacted with mantle peridotites. The lower crust delamination beneath the Liaodong Peninsula resulted from paleo-Pacific plate subduction during the Early Cretaceous, which resulted in thinning of Mesozoic crust in the Xiuyan area.


Sign in / Sign up

Export Citation Format

Share Document