indicator mineral
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 31)

H-INDEX

12
(FIVE YEARS 2)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Daniel Layton-Matthews ◽  
M. Beth McClenaghan

This paper provides a summary of traditional, current, and developing exploration techniques using indicator minerals derived from glacial sediments, with a focus on Canadian case studies. The 0.25 to 2.0 mm fraction of heavy mineral concentrates (HMC) from surficial sediments is typically used for indicator mineral surveys, with the finer (0.25–0.50 mm) fraction used as the default grain size for heavy mineral concentrate studies due to the ease of concentration and separation and subsequent mineralogical identification. Similarly, commonly used indicator minerals (e.g., Kimberlite Indicator Minerals—KIMs) are well known because of ease of optical identification and their ability to survive glacial transport. Herein, we review the last 15 years of the rapidly growing application of Automated Mineralogy (e.g., MLA, QEMSCAN, TIMA, etc) to indicator mineral studies of several ore deposit types, including Ni-Cu-PGE, Volcanogenic Massive Sulfides, and a variety of porphyry systems and glacial sediments down ice of these deposits. These studies have expanded the indicator mineral species that can be applied to mineral exploration and decreased the size of the grains examined down to ~10 microns. Chemical and isotopic fertility indexes developed for bedrock can now be applied to indicator mineral grains in glacial sediments and these methods will influence the next generation of indicator mineral studies.


2021 ◽  
pp. geochem2021-070
Author(s):  
M.B. McClenaghan ◽  
W.A. Spirito ◽  
S.J.A. Day ◽  
M.W. McCurdy ◽  
R.J. McNeil ◽  
...  

The Geological Survey of Canada carried out reconnaissance-scale to deposit-scale geochemical and indicator-mineral surveys and case studies across northern Canada between 2008 and 2020 as part of its Geo-mapping for Energy and Minerals (GEM) program. In these studies, surficial geochemistry was used to determine the concentrations of up to 65 elements in various sample media including lake sediment, lake water, stream sediment, stream water, or till samples across approximately 1 000 000 km2 of northern Canada. As part of these surficial geochemistry surveys, indicator mineral methods were also used in regional-scale and deposit-scale stream sediment and till surveys. Through this program, areas with anomalous concentrations of elements and/or indicator minerals that are indicative of bedrock mineralization were identified, new mineral exploration models and protocols were developed, a new generation of geoscientists was trained, and geoscience knowledge was transferred to northern communities. Regional- and deposit-scale studies demonstrated how transport data (till geochemistry, indicator mineral abundance) and ice-flow indicator data can be used together to identify and understand complex ice flow and glacial transport. Detailed studies at the Izok Lake Zn-Cu-Pb-Ag VMS, Nunavut, the Pine Point carbonate-hosted Pb-Zn in the Northwest Territories, the Strange Lake REE deposit in Quebec and Labrador as well as U-Cu-Fe-F and Cu-Ag-Au-Au IOCG deposits in the Great Bear magmatic zone, Northwest Territories demonstrate new suites of indicator minerals that can now be used in future reconnaissance- and regional-scale stream sediment and till surveys across Canada.


2021 ◽  
Author(s):  
Jason Williams ◽  
Sally Potter-McIntyre ◽  
Justin Filiberto ◽  
Shaunna Morrison ◽  
Daniel Hummer

<p>Indicator minerals have special physical and chemical properties that can be analyzed to glean information concerning the composition of host rocks and formational (or altering) fluids. Clay, zeolite, and tourmaline mineral groups are all ubiquitous at the Earth’s surface and shallow crust and distributed through a wide variety of sedimentary, igneous, metamorphic, and hydrothermal systems. Traditional studies of indicator mineral-bearing deposits have provided a wealth of data that could be integral to discovering new insights into the formation and evolution of naturally occurring systems. This study evaluates the relationships that exist between different environmental indicator mineral groups through the implementation of machine learning algorithms and network diagrams. Mineral occurrence data for thousands of localities hosting clay, zeolite, and tourmaline minerals were retrieved from mineral databases. Clustering techniques (e.g., agglomerative hierarchical clustering and density based spatial clustering of applications with noise) combined with network analyses were used to analyze the compiled dataset in an effort to characterize and identify geological processes operating at different localities across the United States. Ultimately, this study evaluates the ability of machine learning algorithms to act as supplementary diagnostic and interpretive tools in geoscientific studies.</p>


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 103
Author(s):  
H. Donald Lougheed ◽  
M. Beth McClenaghan ◽  
Daniel Layton-Matthews ◽  
Matthew I. Leybourne ◽  
Agatha Natalie Dobosz

Exploration under thick glacial sediment cover is an important facet of modern mineral exploration in Canada and northern Europe. Till heavy mineral concentrate (HMC) indicator mineral methods are well established in exploration for diamonds, gold, and base metals in glaciated terrain. Traditional methods rely on visual examination of >250 µm HMC material. This study applies mineral liberation analysis (MLA) to investigate the finer (<250 µm) fraction of till HMC. Automated mineralogy (e.g., MLA) of finer material allows for the rapid collection of precise compositional and morphological data from a large number (10,000–100,000) of heavy mineral grains in a single sample. The Sisson W-Mo deposit has a previously documented dispersal train containing the ore minerals scheelite, wolframite, and molybdenite, along with sulfide and other accessory minerals, and was used as a test site for this study. Wolframite is identified in till samples up to 10 km down ice, whereas in previous work on the coarse fraction of till it was only identified directly overlying mineralization. Chalcopyrite and pyrite are found up to 10 km down ice, an increase over 2.5 and 5 km, respectively, achieved in previous work on the coarse fraction of the same HMC. Galena, sphalerite, arsenopyrite, and pyrrhotite are also found up to 10 km down ice after only being identified immediately overlying mineralization using the >250 µm fraction of HMC. Many of these sulfide grains are present only as inclusions in more chemically and robust minerals and would not be identified using optical methods. The extension of the wolframite dispersal train highlights the ability of MLA to identify minerals that lack distinguishing physical characteristics to aid visual identification.


2021 ◽  
Vol 118 (3) ◽  
pp. e2017231118
Author(s):  
Suzanne L. Baldwin ◽  
Jan Schönig ◽  
Joseph P. Gonzalez ◽  
Hugh Davies ◽  
Hilmar von Eynatten

Rock recycling within the forearcs of subduction zones involves subduction of sediments and hydrated lithosphere into the upper mantle, exhumation of rocks to the surface, and erosion to form new sediment. The compositions of, and inclusions within detrital minerals revealed by electron microprobe analysis and Raman spectroscopy preserve petrogenetic clues that can be related to transit through the rock cycle. We report the discovery of the ultrahigh-pressure (UHP) indicator mineral coesite as inclusions in detrital garnet from a modern placer deposit in the actively exhuming Late Miocene–Recent high- and ultrahigh-pressure ((U)HP) metamorphic terrane of eastern Papua New Guinea. Garnet compositions indicate the coesite-bearing detrital garnets are sourced from felsic protoliths. Carbonate, graphite, and CO2 inclusions also provide observational constraints for geochemical cycling of carbon and volatiles during subduction. Additional discoveries include polyphase inclusions of metastable polymorphs of SiO2 (cristobalite) and K-feldspar (kokchetavite) that we interpret as rapidly cooled former melt inclusions. Application of elastic thermobarometry on coexisting quartz and zircon inclusions in six detrital garnets indicates elastic equilibration during exhumation at granulite and amphibolite facies conditions. The garnet placer deposit preserves a record of the complete rock cycle, operative on <10-My geologic timescales, including subduction of sedimentary protoliths to UHP conditions, rapid exhumation, surface uplift, and erosion. Detrital garnet geochemistry and inclusion suites from both modern sediments and stratigraphic sections can be used to decipher the petrologic evolution of plate boundary zones and reveal recycling processes throughout Earth’s history.


2021 ◽  
Author(s):  
I R Smith ◽  
S J A Day ◽  
R C Paulen ◽  
D G Pearson

Till (n=196) and stream sediment (n=60) samples were collected in the area south and west of Great Slave Lake, Northwest Territories (NTS 85B, C, F, and G), over the course of 3 summer field seasons. Samples were processed to recover kimberlite and other indicator minerals. This report summarizes results of the kimberlite indicator mineral (KIM) studies, including measures of KIM mineral types, abundances, and chemistry (major, trace, and rare earth elements). KIMs were present in 24% of the samples collected, and only 183 KIM grains in total were recovered, of which Cr-pyrope garnets were the most abundant (65.6%). Chemical analyses revealed strong similarities to the Drybones Bay and Mud Lake kimberlites which are situated 50 to &amp;gt;100 km to the northeast, roughly aligned with prominent glacially streamlined landform flowsets in this field area. Results suggest there is little evidence for undetected kimberlite outcrop or sub-crop in the study area.


2020 ◽  
Vol 548 ◽  
pp. 119674
Author(s):  
Tobias U. Schlegel ◽  
Thomas Wagner ◽  
Tobias Fusswinkel

Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 290
Author(s):  
Gabriella B. Kiss ◽  
Federica Zaccarini

Titanite in submarine mafic magmatic rocks of Neotethyan origin was studied to reveal its possible use as an indicator mineral of modern Cyprus-type VMS deposits. Four ore deposit bearing (mineralized) and eight barren (unmineralized) Triassic–Jurassic locations from the Apennines, displaced fragments of the Dinarides, as well as the Dinarides and Hellenides were studied in order to gain representative results. Preliminary SEM-EDS and more detailed EPMA analyses were performed to characterize compositional variations of titanite from basalt, dolerite and gabbro. The obtained results show compositional differences according to the mode of formation. Titanite from VMS mineralized zones shows a composition close to stoichiometric values, and thus can be distinguished based on Ti content (Ti (apfu) ≥ 0.85). Due to Fe + Al substitution on Ti site, the Fe + Al vs. Ti binary plot seems to be the most discriminant for distinguishing mineralized and unmineralized locations. However, Fe vs. Al, Al vs. Mn and Si vs. Ca + Mn discrimination diagrams can also be used. Hence, compositional variations of titanite may be a possible new tool for prospection of concealed Cyprus-type deposits in the Neotethyan realm.


Sign in / Sign up

Export Citation Format

Share Document