Increasing normal–appearing grey and white matter magnetisation transfer ratio abnormality in early relapsing–remitting multiple sclerosis

2005 ◽  
Vol 252 (9) ◽  
pp. 1037-1044 ◽  
Author(s):  
G. R. Davies ◽  
D. R. Altmann ◽  
A. Hadjiprocopis ◽  
W. Rashid ◽  
D. T. Chard ◽  
...  
2018 ◽  
Vol 25 (8) ◽  
pp. 1113-1123 ◽  
Author(s):  
Benoît Combès ◽  
Anne Kerbrat ◽  
Jean Christophe Ferré ◽  
Virginie Callot ◽  
Josefina Maranzano ◽  
...  

Background: Studies including patients with well-established multiple sclerosis (MS) have shown a significant and disability-related reduction in the cervical spinal cord (SC) magnetisation transfer ratio (MTR). Objectives: The objectives are to (1) assess whether MTR reduction is already measurable in the SC of patients with early relapsing–remitting multiple sclerosis (RRMS) and (2) describe its spatial distribution. Methods: We included 60 patients with RRMS <12  months and 34 age-matched controls at five centres. Axial T2*w, sagittal T2w, sagittal phase-sensitive inversion recovery (PSIR), 3DT1w, and axial magnetisation transfer (MT) images were acquired from C1 to C7. Lesions were manually labelled and mean MTR values computed both for the whole SC and for normal-appearing SC in different regions of interest. Results: Mean whole SC MTR was significantly lower in patients than controls (33.7 vs 34.9  pu, p  =  0.00005), even after excluding lesions (33.9  pu, p  =  0.0003). We observed a greater mean reduction in MTR for vertebral levels displaying the highest lesion loads (C2–C4). In the axial plane, we observed a greater mean MTR reduction at the SC periphery and barycentre. Conclusion: Cervical SC tissue damage measured using MTR is not restricted to macroscopic lesions in patients with early RRMS and is not homogeneously distributed.


2014 ◽  
Vol 20 (10) ◽  
pp. 1322-1330 ◽  
Author(s):  
Rebecca S Samson ◽  
Manuel J Cardoso ◽  
Nils Muhlert ◽  
Varun Sethi ◽  
Claudia AM Wheeler-Kingshott ◽  
...  

Background: Pathological abnormalities including demyelination and neuronal loss are reported in the outer cortex in multiple sclerosis (MS). Objective: We investigated for in vivo evidence of outer cortical abnormalities by measuring the magnetisation transfer ratio (MTR) in MS patients of different subgroups. Methods: Forty-four relapsing–remitting (RR) (mean age 41.9 years, median Expanded Disability Status Scale (EDSS) 2.0), 25 secondary progressive (SP) (54.1 years, EDSS 6.5) and 19 primary progressive (PP) (53.1 years, EDSS 6.0) MS patients and 35 healthy control subjects (mean age 39.2 years) were studied. Three-dimensional (3D) 1×1×1mm3 T1-weighted images and MTR data were acquired. The cortex was segmented, then subdivided into outer and inner bands, and MTR values were calculated for each band. Results: In a pairwise analysis, mean outer cortical MTR was lower than mean inner cortical MTR in all MS groups and controls ( p<0.001). Compared with controls, outer cortical MTR was decreased in SPMS ( p<0.001) and RRMS ( p<0.01), but not PPMS. Outer cortical MTR was lower in SPMS than PPMS ( p<0.01) and RRMS ( p<0.01). Conclusions: Lower outer than inner cortical MTR in healthy controls may reflect differences in myelin content. The lowest outer cortical MTR was seen in SPMS and is consistent with more extensive outer cortical (including subpial) pathology, such as demyelination and neuronal loss, as observed in post-mortem studies of SPMS patients.


2007 ◽  
Vol 13 (2) ◽  
pp. 169-177 ◽  
Author(s):  
Gr Davies ◽  
A Hadjiprocopis ◽  
DR Altmann ◽  
Dt Chard ◽  
Cm Griffin ◽  
...  

Objective To investigate the presence and evolution of T1 relaxation time abnormalities in normal-appearing white matter (NAWM) and grey matter (GM), early in the course of relapsing–remitting multiple sclerosis (MS). Methods Twenty-three patients with early relapsing–remitting MS and 14 healthy controls were imaged six monthly for up to three years. Mean follow-up was 26 months for MS patients and 24 months for controls. Dual-echo fast-spin echo and gradient-echo proton-density and T1-weighted data sets (permitting the calculation of a T1 map) were acquired in all subjects. GM and NAWM T1 histograms were produced and a hierarchical regression model was used to investigate changes in T1 over time. Results At baseline, significant patient-control differences were seen, both in NAWM (P = 0.001) and in GM (P = 0.01). At follow-up, there was no evidence for a serial change in either mean T1 or peak-location for either NAWM or GM. There was weak evidence for a decline in patient NAWM peak-height and also evidence for a decline in control GM peak-height. Conclusion There are significant and persistent abnormalities of NAWM and GM T1 in early relapsing-remitting MS. Further studies should address whether such T1 measures have a role in prognosis or therapeutic monitoring. Multiple Sclerosis 2007; 13:169–177. http://msj.sagepub.com


2007 ◽  
Vol 13 (4) ◽  
pp. 483-489 ◽  
Author(s):  
B. Audoin ◽  
G. Davies ◽  
W. Rashid ◽  
L. Fisniku ◽  
A.J. Thompson ◽  
...  

Previous studies using magnetization transfer ratio (MTR) histogram analysis have demonstrated the existence of global grey matter (GM) abnormalities in patients with early relapsing-remitting multiple sclerosis (RRMS). However, MTR histogram analysis does not provide any information on the localization of the morphological changes within the GM. The aim of this study was to investigate the localization of GM injury in early RRMS, performing voxel-based analysis of GM MTR maps. Statistical mapping analysis of GM MTR maps was performed in a group of 38 patients with early RRMS and 45 healthy controls. Between-group comparisons (P<0.05, corrected for multiple comparisons) demonstrated significant GM MTR decrease in patients located in the bilateral lenticular nuclei, the bilateral insula, the left posterior cingulate cortex, and the right orbitofrontal cortex. To limit the potential confounding effect of regional GM atrophy, the percentages of GM were assessed in the regions showing significant MTR decrease, and no GM atrophy was evidenced in these regions. This study demonstrates that several GM regions are commonly affected in patients with early RRMS. Predominant involvement of these structures may be partly related to their vulnerability to anterograde or retrograde degeneration from transected axons in the white matter and/or to the predominant localization of GM demyelinating lesions in such regions. Multiple Sclerosis 2007; 13: 483-489. http://msj.sagepub.com


Sign in / Sign up

Export Citation Format

Share Document