phase sensitive inversion recovery
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Peter Kellman ◽  
Hui Xue ◽  
Kelvin Chow ◽  
James Howard ◽  
Liza Chacko ◽  
...  

Abstract Background Quantitative cardiovascular magnetic resonance (CMR) T1 and T2 mapping are used to detect diffuse disease such as myocardial fibrosis or edema. However, post gadolinium contrast mapping often lacks visual contrast needed for assessment of focal scar. On the other hand, late gadolinium enhancement (LGE) CMR which nulls the normal myocardium has excellent contrast between focal scar and normal myocardium but has poor ability to detect global disease. The objective of this work is to provide a calculated bright-blood (BB) and dark-blood (DB) LGE based on simultaneous acquisition of T1 and T2 maps, so that both diffuse and focal disease may be assessed within a single multi-parametric acquisition. Methods The prototype saturation recovery-based SASHA T1 mapping may be modified to jointly calculate T1 and T2 maps (known as multi-parametric SASHA) by acquiring additional saturation recovery (SR) images with both SR and T2 preparations. The synthetic BB phase sensitive inversion recovery (PSIR) LGE may be calculated from the post-contrast T1, and the DB PSIR LGE may be calculated from the post-contrast joint T1 and T2 maps. Multi-parametric SASHA maps were acquired free-breathing (45 heartbeats). Protocols were designed to use the same spatial resolution and achieve similar signal-to-noise ratio (SNR) as conventional motion corrected (MOCO) PSIR. The calculated BB and DB LGE were compared with separate free breathing (FB) BB and DB MOCO PSIR acquisitions requiring 16 and 32 heart beats, respectively. One slice with myocardial infarction (MI) was acquired with all protocols within 4 min. Results Multiparametric T1 and T2 maps and calculated BB and DB PSIR LGE images were acquired for patients with subendocardial chronic MI (n = 10), acute MI (n = 3), and myocarditis (n = 1). The contrast-to-noise (CNR) between scar (MI and myocarditis) and remote was 26.6 ± 7.7 and 20.2 ± 7.4 for BB and DB PSIR LGE, and 31.3 ± 10.6 and 21.8 ± 7.6 for calculated BB and DB PSIR LGE, respectively. The CNR between scar and the left ventricualr blood pool was 5.2 ± 6.5 and 29.7 ± 9.4 for conventional BB and DB PSIR LGE, and 6.5 ± 6.0 and 38.6 ± 11.6 for calculated BB and DB PSIR LGE, respectively. Conclusions A single free-breathing acquisition using multi-parametric SASHA provides T1 and T2 maps and calculated BB and DB PSIR LGE images for comprehensive tissue characterization.


2021 ◽  
Vol 18 (3) ◽  
Author(s):  
Hassan Hashemi ◽  
Maryam Mohammadzadeh ◽  
Mohammad Hossein Dianat ◽  
Amir Reza Azimi ◽  
Hamed Naghibi ◽  
...  

Background: Precise detection and classification of intracortical (IC) lesions in multiple sclerosis (MS) patients are very important for understanding their role in disease progression and determining their effects on the clinical presentations of the disease. Objectives: This study aimed to evaluate the efficacy of phase-sensitive inversion recovery (PSIR) in delineation of cortical lesions in MS patients. Patients and Methods: This cross-sectional, single-center study was performed among 38 patients with the mean age of 31 years, who were recruited from December 2018 to August 2020. All MS patients underwent magnetic resonance imaging (MRI), using a 1.5-Tesla scanner. Two expert neuroradiologists interpreted the fluid-attenuated inversion recovery (FLAIR), T2-weighted turbo spin echo (T2W-TSE), and PSIR images. The lesions were classified as purely IC, mixed gray/white matter (WM) [leukocortical (LC)], and juxtacortical (JC). The number of lesions in each region was compared between the FLAIR, T2W-TSE, and PSIR sequences. Results: The number of cortical lesions (IC and LC) was significantly higher in PSIR compared to T2W-TSE and Fluid attenuated inversion recovery (FLAIR) (P < 0.001), while the number of JC lesions was lower; in other words, the mean number of plaques was higher in T2W-TSE and FLAIR as compared to PSIR. Conclusion: The PSIR sequence significantly improved the delineation of cortical lesions and could be useful in monitoring cortical injuries and disease progression in MS patients.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0247813
Author(s):  
Adrien Goujon ◽  
Sonia Mirafzal ◽  
Kevin Zuber ◽  
Romain Deschamps ◽  
Jean-Claude Sadik ◽  
...  

Background and purpose To compare 3D-Fast Gray Matter Acquisition with Phase Sensitive Inversion Recovery (3D-FGAPSIR) with conventional 3D-Short-Tau Inversion Recovery (3D-STIR) and sagittal T1-and T2-weighted MRI dataset at 3 Tesla when detecting MS spinal cord lesions. Material and methods This prospective single-center study was approved by an institutional review board and enrolled participants from December 2016 to August 2018. Two neuroradiologists blinded to all data, individually analyzed the 3D-FGAPSIR and the conventional datasets separately and in random order. Discrepancies were resolved by consensus by a third neuroradiologist. The primary judgment criterion was the number of MS spinal cord lesions. Secondary judgment criteria included lesion enhancement, lesion delineation, reader-reported confidence and lesion-to-cord-contrast-ratio. A Wilcoxon’s test was used to compare the two datasets. Results 51 participants were included. 3D-FGAPSIR detected significantly more lesions than the conventional dataset (344 versus 171 respectively, p<0.001). Two participants had no detected lesion on the conventional dataset, whereas 3D-FGAPSIR detected at least one lesion. 3/51 participants had a single enhancing lesion detected by both datasets. Lesion delineation and reader-reported confidence were significantly higher with 3D-FGAPSIR: 4.5 (IQR 1) versus 2 (IQR 0.5), p<0.0001 and 4.5 (IQR 1) versus 2.5 (IQR 0.5), p<0.0001. Lesion-to-cord-contrast-ratio was significantly higher using 3D-FGAPSIR as opposed to 3D-STIR and T2: 1.4 (IQR 0,3) versus 0.4 (IQR 0,1) and 0.3 (IQR 0,1)(p = 0.04). Correlations with clinical data and inter- and intra-observer agreements were higher with 3D-FGAPSIR. Conclusion 3D-FGAPSIR improved overall MS spinal cord lesion detection as compared to conventional set and detected all enhancing lesions.


Brain ◽  
2020 ◽  
Vol 143 (10) ◽  
pp. 2988-2997
Author(s):  
Piet M Bouman ◽  
Martijn D Steenwijk ◽  
Petra J W Pouwels ◽  
Menno M Schoonheim ◽  
Frederik Barkhof ◽  
...  

Abstract Cortical demyelinating lesions are clinically important in multiple sclerosis, but notoriously difficult to visualize with MRI. At clinical field strengths, double inversion recovery MRI is most sensitive, but still only detects 18% of all histopathologically validated cortical lesions. More recently, phase-sensitive inversion recovery was suggested to have a higher sensitivity than double inversion recovery, although this claim was not histopathologically validated. Therefore, this retrospective study aimed to provide clarity on this matter by identifying which MRI sequence best detects histopathologically-validated cortical lesions at clinical field strength, by comparing sensitivity and specificity of the thus far most commonly used MRI sequences, which are T2, fluid-attenuated inversion recovery (FLAIR), double inversion recovery and phase-sensitive inversion recovery. Post-mortem MRI was performed on non-fixed coronal hemispheric brain slices of 23 patients with progressive multiple sclerosis directly after autopsy, at 3 T, using T1 and proton-density/T2-weighted, as well as FLAIR, double inversion recovery and phase-sensitive inversion recovery sequences. A total of 93 cortical tissue blocks were sampled from these slices. Blinded to histopathology, all MRI sequences were consensus scored for cortical lesions. Subsequently, tissue samples were stained for proteolipid protein (myelin) and scored for cortical lesion types I–IV (mixed grey matter/white matter, intracortical, subpial and cortex-spanning lesions, respectively). MRI scores were compared to histopathological scores to calculate sensitivity and specificity per sequence. Next, a retrospective (unblinded) scoring was performed to explore maximum scoring potential per sequence. Histopathologically, 224 cortical lesions were detected, of which the majority were subpial. In a mixed model, sensitivity of T1, proton-density/T2, FLAIR, double inversion recovery and phase-sensitive inversion recovery was 8.9%, 5.4%, 5.4%, 22.8% and 23.7%, respectively (20, 12, 12, 51 and 53 cortical lesions). Specificity of the prospective scoring was 80.0%, 75.0%, 80.0%, 91.1% and 88.3%. Sensitivity and specificity did not significantly differ between double inversion recovery and phase-sensitive inversion recovery, while phase-sensitive inversion recovery identified more lesions than double inversion recovery upon retrospective analysis (126 versus 95; P &lt; 0.001). We conclude that, at 3 T, double inversion recovery and phase-sensitive inversion recovery sequences outperform conventional sequences T1, proton-density/T2 and FLAIR. While their overall sensitivity does not exceed 25%, double inversion recovery and phase-sensitive inversion recovery are highly pathologically specific when using existing scoring criteria and their use is recommended for optimal cortical lesion assessment in multiple sclerosis.


2020 ◽  
pp. 028418512092080
Author(s):  
Yasuhiro Fujiwara ◽  
Tetsuyoshi Hirai ◽  
Tomohiro Ueda ◽  
Hiroyuki Kumazoe ◽  
Shigeki Ito

Background Quantitative evaluation of degeneration of the substantia nigra (SN) is important for early, pre-symptomatic diagnosis of Parkinson’s disease (PD). Accordingly, a clinically feasible imaging and quantification technique are needed. Purpose To investigate the T1 value of the SN in healthy individuals from phase-sensitive inversion recovery (PSIR) images and to clarify its correlation with the SN characteristics on neuromelanin (NM) images to identify an imaging biomarker for early diagnosis of PD. Material and Methods T1-weighted and NM images of the SN from 32 healthy volunteers were obtained using PSIR and turbo spin-echo sequences. The contrast between the SN and cerebral peduncle (CP) and area of the SN were measured; the T1 values of the SN from PSIR images and relationships between the T1 value and age/SN area were evaluated. Results There was a significant negative correlation between age and the SN area obtained using PSIR imaging. The SN area on PSIR images (104.9 ± 20.9 mm2) was significantly larger than that on NM images (72.1 ± 14.9 mm2). There was a significant negative correlation between the SN area and the T1 value of the SN obtained from PSIR images. Conclusion In healthy adults, the area and T1 value of the SN measured on PSIR images were different from those obtained from NM images. This suggests that PSIR imaging may help in the assessment of SN degeneration.


Sign in / Sign up

Export Citation Format

Share Document