Analyses in transfected cells and in vitro of a putative peroxisomal targeting signal of rat liver serine:pyruvate aminotransferase

2002 ◽  
Vol 118 (4) ◽  
pp. 321-328 ◽  
Author(s):  
Takuji Mizuno ◽  
Kouichi Ito ◽  
Chiharu Uchida ◽  
Masatoshi Kitagawa ◽  
Arata Ichiyama ◽  
...  
Author(s):  
G-A. Keller ◽  
S. J. Gould ◽  
S. Subramani ◽  
S. Krisans

Subcellular compartments within eukaryotic cells must each be supplied with unique sets of proteins that must be directed to, and translocated across one or more membranes of the target organelles. This transport is mediated by cis- acting targeting signals present within the imported proteins. The following is a chronological account of a series of experiments designed and carried out in an effort to understand how proteins are targeted to the peroxisomal compartment.-We demonstrated by immunocryoelectron microscopy that the enzyme luciferase is a peroxisomal enzyme in the firefly lantern. -We expressed the cDNA encoding firefly luciferase in mammalian cells and demonstrated by immunofluorescence that the enzyme was transported into the peroxisomes of the transfected cells. -Using deletions, linker insertions, and gene fusion to identify regions of luciferase involved in its transport to the peroxisomes, we demonstrated that luciferase contains a peroxisomal targeting signal (PTS) within its COOH-terminal twelve amino acid.


2000 ◽  
Vol 113 (20) ◽  
pp. 3663-3671 ◽  
Author(s):  
M. Schrader ◽  
S.J. King ◽  
T.A. Stroh ◽  
T.A. Schroer

We have directly imaged the dynamic behavior of a variety of morphologically different peroxisomal structures in HepG2 and COS-7 cells transfected with a construct encoding GFP bearing the C-terminal peroxisomal targeting signal 1. Real time imaging revealed that moving peroxisomes interacted with each other and were engaged in transient contacts, and at higher magnification, tubular peroxisomes appeared to form a peroxisomal reticulum. Local remodeling of these structures could be observed involving the formation and detachment of tubular processes that interconnected adjacent organelles. Inhibition of cytoplasmic dynein based motility by overexpression of the dynactin subunit, dynamitin (p50), inhibited the movement of peroxisomes in vivo and interfered with the reestablishment of a uniform distribution of peroxisomes after recovery from nocodazole treatment. Isolated peroxisomes moved in vitro along microtubules in the presence of a microtubule motor fraction. Our data reveal that peroxisomal behavior in vivo is significantly more dynamic and interactive than previously thought and suggest a role for the dynein/dynactin motor in peroxisome motility.


2000 ◽  
Vol 346 (1) ◽  
pp. 177-184 ◽  
Author(s):  
Rachel K. SZILARD ◽  
Richard A. RACHUBINSKI

Peroxins are proteins required for peroxisome assembly and are encoded by the PEX genes. The Yarrowia lipolytica pex5-1 mutant fails to import a subset of peroxisomal matrix proteins, including those with a type 1 peroxisomal targeting signal (PTS1). Pex5p family members interact with a PTS1 through their characteristic tetratricopeptide repeat (TPR) domain. We used binding assays in vitro to investigate the nature of the association of Y. lipolytica Pex5p (YlPex5p) with the PTS1 signal. A purified recombinant YlPex5p fusion protein interacted specifically, directly and autonomously with a protein terminating in a PTS1. Wild-type YlPex5p translated in vitro recognized functional PTS1s specifically. This activity is abrogated by the substitution of an aspartic residue for a conserved glycine residue in the TPR domain (G455D) of YlPex5p encoded by the pex5-1 allele. Deletion analysis demonstrated that an intact TPR domain of YlPex5p is necessary but not sufficient for both interaction with a PTS1 and functional complementation of a strain lacking YlPex5p.


1990 ◽  
Vol 110 (1) ◽  
pp. 27-34 ◽  
Author(s):  
S J Gould ◽  
S Krisans ◽  
G A Keller ◽  
S Subramani

We have previously shown that the peroxisomal targeting signal in firefly luciferase consists of the COOH-terminal three amino acids of the protein, serine-lysine-leucine (Gould, S.J., G.A. Keller, N. Hosken, J. Wilkinson, and S. Subramani, 1989. J. Cell Biol. 108:1657-1664). Antibodies were raised against a synthetic peptide that contained this tripeptide at its COOH terminus. Immunofluorescence and immunocryoelectron microscopy revealed that the anti-peptide antibodies specifically detected peroxisomes in mammalian cells. Further characterization revealed that the antibodies were primarily directed against the COOH-terminal three amino acids of the peptide. In Western blot experiments, the antibodies recognized 15-20 rat liver peroxisomal proteins, but reacted with only a few proteins from other subcellular compartments. These results provide independent immunological evidence that the peroxisomal targeting signal identified in firefly luciferase is present in many peroxisomal proteins.


1999 ◽  
Vol 112 (10) ◽  
pp. 1579-1590 ◽  
Author(s):  
C.C. Chang ◽  
S. South ◽  
D. Warren ◽  
J. Jones ◽  
A.B. Moser ◽  
...  

Zellweger syndrome and related disorders represent a group of lethal, genetically heterogeneous diseases. These peroxisome biogenesis disorders (PBDs) are characterized by defective peroxisomal matrix protein import and comprise at least 10 complementation groups. The genes defective in seven of these groups and more than 90% of PBD patients are now known. Here we examine the distribution of peroxisomal membrane proteins in fibroblasts from PBD patients representing the seven complementation groups for which the mutant gene is known. Peroxisomes were detected in all PBD cells, indicating that the ability to form a minimal peroxisomal structure is not blocked in these mutants. We also observed that peroxisome abundance was reduced fivefold in PBD cells that are defective in the PEX1, PEX5, PEX12, PEX6, PEX10, and PEX2 genes. These cell lines all display a defect in the import of proteins with the type-1 peroxisomal targeting signal (PTS1). In contrast, peroxisome abundance was unaffected in cells that are mutated in PEX7 and are defective only in the import of proteins with the type-2 peroxisomal targeting signal. Interestingly, a fivefold reduction in peroxisome abundance was also observed for cells lacking either of two PTS1-targeted peroxisomal beta-oxidation enzymes, acyl-CoA oxidase and 2-enoyl-CoA hydratase/D-3-hydroxyacyl-CoA dehydrogenase. These results indicate that reduced peroxisome abundance in PBD cells may be caused by their inability to import these PTS1-containing enzymes. Furthermore, the fact that peroxisome abundance is influenced by peroxisomal 105-oxidation activities suggests that there may be metabolic control of peroxisome abundance.


1989 ◽  
Vol 9 (1) ◽  
pp. 83-91
Author(s):  
S Miyazawa ◽  
T Osumi ◽  
T Hashimoto ◽  
K Ohno ◽  
S Miura ◽  
...  

To identify the topogenic signal of peroxisomal acyl-coenzyme A oxidase (AOX) of rat liver, we carried out in vitro import experiments with mutant polypeptides of the enzyme. Full-length AOX and polypeptides that were truncated at the N-terminal region were efficiently imported into peroxisomes, as determined by resistance to externally added proteinase K. Polypeptides carrying internal deletions in the C-terminal region exhibited much lower import activities. Polypeptides that were truncated or mutated at the extreme C terminus were totally import negative. When the five amino acid residues at the extreme C terminus were attached to some of the import-negative polypeptides, the import activities were rescued. Moreover, the C-terminal 199 and 70 amino acid residues of AOX directed fusion proteins with two bacterial enzymes to peroxisomes. These results are interpreted to mean that the peroxisome targeting signal of AOX residues at the C terminus and the five or fewer residues at the extreme terminus have an obligatory function in targeting. The C-terminal internal region also has an important role for efficient import, possibly through a conformational effect.


2004 ◽  
Vol 78 (9) ◽  
pp. 4744-4752 ◽  
Author(s):  
Beatriz Navarro ◽  
Luisa Rubino ◽  
Marcello Russo

ABSTRACT Open reading frame 1 in the viral genome of Cymbidium ringspot virus encodes a 33-kDa protein (p33), which was previously shown to localize to the peroxisomal membrane in infected and transgenic plant cells. To determine the sequence requirements for the organelle targeting and membrane insertion, the protein was expressed in the yeast Saccharomyces cerevisiae in native form (33K) or fused to the green fluorescent protein (33KGFP). Cell organelles were identified by immunolabeling of marker proteins. In addition, peroxisomes were identified by simultaneous expression of the red fluorescent protein DsRed containing a peroxisomal targeting signal and mitochondria by using the dye MitoTracker. Fluorescence microscopy showed the 33KGFP fusion protein concentrated in a few large bodies colocalizing with peroxisomes. These bodies were shown by electron microscopy to be composed by aggregates of peroxisomes, a few mitochondria and endoplasmic reticulum (ER) strands. In immunoelectron microscopy, antibodies to p33 labeled the peroxisomal clumps. Biochemical analysis suggested that p33 is anchored to the peroxisomal membrane through a segment of ca. 7 kDa, which corresponds to the sequence comprising two hydrophobic transmembrane domains and a hydrophilic interconnecting loop. Analysis of deletion mutants confirmed these domains as essential components of the p33 peroxisomal targeting signal, together with a cluster of three basic amino acids (KRR). In yeast mutants lacking peroxisomes p33 was detected in the ER. The possible involvement of the ER as an intermediate step for the integration of p33 into the peroxisomal membrane is discussed.


Sign in / Sign up

Export Citation Format

Share Document